
www.pearson.co.in

This edition is manufactured in India and is authorized for sale only
in India, Bangladesh, Bhutan, Pakistan, Nepal, Sri Lanka and the Maldives.

EON
PreMedia

CONFIRMING PGS

THIRD EDITION

COMPUTER SYSTEM
ARCHITECTURE

M. Morris Mano
California State University

Los Angeles

FM.qxd 5/21/2007 5:18 PM Page i

EON
PreMedia

CONFIRMING PGS

The author and publisher of this book have used their best efforts in preparing this book. These efforts include
the development, research, and testing of the theories to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with regard to these programs or the docu-
mentation contained in this book. The author and publisher shall not be liable in any event for incidental or
consequential damages in connection with, or arising out of the furnishing, performance, or use of these
theories and programs.

Authorized adaptation from the United States edition, entitled CCoommppuutteerr SSyysstteemm AArrcchhiitteeccttuurree,, TThhiirrdd EEddiittiioonn,
ISBN: 0131755633 by Mano, Morris M., published by Pearson Education, Inc., © 1993

Indian Subcontinent Adaptation
CCooppyyrriigghhtt ©© 22000077 DDoorrlliinngg KKiinnddeerrsslleeyy ((IInnddiiaa)) PPvvtt.. LLttdd..

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, resold, hired
out, or otherwise circulated without the publisher’s prior written consent in any form of binding or cover
other than that in which it is published and without a similar condition including this condition being
imposed on the subsequent purchaser and without limiting the rights under copyright reserved above, no
part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted in
any form or by any means (electronic, mechanical, photocopying, recording or otherwise), without the prior
written permission of both the copyright owner and the above-mentioned publisher of this book.

ISBN 81-317-0070-4

FFiirrsstt IImmpprreessssiioonn,, 22000077

TThhiiss eeddiittiioonn iiss mmaannuuffaaccttuurreedd iinn IInnddiiaa aanndd iiss aauutthhoorriizzeedd ffoorr ssaallee oonnllyy iinn IInnddiiaa,, BBaannggllaaddeesshh,, BBhhuuttaann,, PPaakkiissttaann,,
NNeeppaall,, SSrrii LLaannkkaa aanndd tthhee MMaallddiivveess..

Published by Dorling Kindersley (India) Pvt. Ltd., licensees of Pearson Education in South Asia.

FM.qxd 5/21/2007 5:18 PM Page ii

No part of this eBook may be used or reproduced in any manner whatsoever without the publisher’s
prior written consent.

This eBook may or may not include all assets that were part of the print version. The publisher
reserves the right to remove any material in this eBook at any time.

Head Office: 15th Floor, Tower-B, World Trade Tower, Plot No. 1, Block-C, Sector-16,
Noida 201 301, Uttar Pradesh, India.
Registered Office: 4th Floor, Software Block, Elnet Software City, TS-140, Block 2 & 9,
Rajiv Gandhi Salai, Taramani, Chennai 600 113, Tamil Nadu, India.
Fax: 080-30461003, Phone: 080-30461060
www.pearson.co.in, Email: companysecretary.india@pearson.com

eISBN 978-93-325-7613-1

EON
PreMedia

CONFIRMING PGS

Preface xv

C H A P T E R O N E

DDiiggiittaall LLooggiicc CCiirrccuuiittss 1

1-1 Digital Computers 1
1-2 Logic Gates 5
1-3 Boolean Algebra 7

Complement of a Function 12
1-4 Map Simplification 12

Product-of-Sums Simplification 16
Don’t-Care Conditions 18

1-5 Combinational Circuits 20
Half-Adder 21
Full-Adder 22

1-6 Flip-Flops 24
SR Flip-Flop 24
D Flip-Flop 25
JK Flip-Flop 26
T Flip-Flop 26
Edge-Triggered Flip-Flops 27
Excitation Tables 28

1-7 Sequential Circuits 29
Flip-Flop Input Equations 30
State Table 31
State Diagram 33
Design Example 33
Design Procedure 36
Problems 38
References 40

iii

Contents

FM.qxd 5/21/2007 5:18 PM Page iii

EON
PreMedia

CONFIRMING PGS

C H A P T E R T W O

DDiiggiittaall CCoommppoonneennttss 41

2-1 Integrated Circuits 41
2-2 Decoders 43

NAND Gate Decoder 45
Decoder Expansion 46
Encoders 47

2-3 Multiplexers 47
2-4 Registers 50

Register with Parallel Load 50
2-5 Shift Registers 52

Bidirectional Shift Register with Parallel Load 53
2-6 Binary Counters 55

Binary Counter with Parallel Load 56
2-7 Memory Unit 59

Random-Access Memory 60
Read-Only Memory 61
Types of ROMs 62
Problems 63
References 65

C H A P T E R T H R E E

DDaattaa RReepprreesseennttaattiioonn 67

3-1 Data Types 67
Number Systems 68
Octal and Hexadecimal Numbers 69
Decimal Representation 72
Alphanumeric Representation 73

3-2 Complements 74
(r � 1)’s Complement 75
(r’s) Complement 75
Subtraction of Unsigned Numbers 76

3-3 Fixed-Point Representation 77
Integer Representation 78
Arithmetic Addition 79
Arithmetic Subtraction 80
Overflow 80
Decimal Fixed-Point Representation 81

3-4 Floating-Point Representation 83

iv Contents

FM.qxd 5/21/2007 5:18 PM Page iv

EON
PreMedia

CONFIRMING PGS

Contents v

3-5 Other Binary Codes 84
Gray Code 85
Other Decimal Codes 85
Other Alphanumeric Codes 87

3-6 Error Detection Codes 87
Problems 90
References 91

C H A P T E R F O U R

RReeggiisstteerr TTrraannssffeerr aanndd MMiiccrrooooppeerraattiioonnss 93

4-1 Register Transfer Language 93
4-2 Register Transfer 95
4-3 Bus and Memory Transfers 97

Three-State Bus Buffers 100
Memory Transfer 101

4-4 Arithmetic Microoperations 102
Binary Adder 103
Binary Adder-Subtractor 104
Binary Incrementer 105
Arithmetic Circuit 106

4-5 Logic Microoperations 108
List of Logic Microoperations 109
Hardware Implementation 111
Some Applications 111

4-6 Shift Microoperations 114
Hardware Implementation 115

4-7 Arithmetic Logic Shift Unit 116
4-8 Hardware Description Languages 118

Introduction to VHDL 119
Basic Framework and Syntax 119
Problems 121
References 124

C H A P T E R F I V E

BBaassiicc CCoommppuutteerr OOrrggaanniizzaattiioonn aanndd DDeessiiggnn 125

5-1 Instruction Codes 125
Stored Program Organization 127
Indirect Address 128

FM.qxd 5/21/2007 5:18 PM Page v

EON
PreMedia

CONFIRMING PGS

5-2 Computer Registers 129
Common Bus System 131

5-3 Computer Instructions 134
Instruction Set Completeness 136

5-4 Timing and Control 137
5-5 Instruction Cycle 141

Fetch and Decode 141
Determine the Type of Instruction 143
Register-Reference Instructions 145

5-6 Memory-Reference Instructions 147
AND to AC 147
ADD to AC 148
LDA: Load to AC 148
STA: Store AC 149
BUN: Branch Unconditionally 149
BSA: Branch and Save Return Address 149
ISZ: Increment and Skip if Zero 151
Control Flowchart 151

5-7 Input–Output and Interrupt 152
Input–Output Configuration 153
Input–Output Instructions 154
Program Interrupt 155
Interrupt Cycle 158

5-8 Complete Computer Description 159
5-9 Design of Basic Computer 159

Control Logic Gates 160
Control of Registers and Memory 160
Control of Single Flip-flops 164
Control of Common Bus 164

5-10 Design of Accumulator Logic 166
Control of AC Register 167
Adder and Logic Circuit 168
Problems 169
References 173

C H A P T E R S I X

PPrrooggrraammmmiinngg tthhee BBaassiicc CCoommppuutteerr 175

6-1 Introduction 175
6-2 Machine Language 176

vi Contents

FM.qxd 5/21/2007 5:18 PM Page vi

EON
PreMedia

CONFIRMING PGS

6-3 Assembly Language 181
Rules of the Language 181
An Example 183
Translation to Binary 184

6-4 The Assembler 185
Representation of Symbolic

Program in Memory 186
First Pass 187
Second Pass 189

6-5 Program Loops 192
6-6 Programming Arithmetic and Logic Operations 194

Multiplication Program 195
Double-Precision Addition 198
Logic Operations 199
Shift Operations 199

6-7 Subroutines 200
Subroutine Parameters and

Data Linkage 202
6-8 Input–Output Programming 205

Character Manipulation 206
Program Interrupt 207
Problems 210
References 213

C H A P T E R S E V E N

MMiiccrroopprrooggrraammmmeedd CCoonnttrrooll 215

7-1 Control Memory 215
7-2 Address Sequencing 218

Conditional Branching 219
Mapping of Instruction 221
Subroutines 222

7-3 Microprogram Example 222
Computer Configuration 222
Microinstruction Format 224
Symbolic Microinstructions 227
The Fetch Routine 228
Symbolic Microprogram 229
Binary Microprogram 231

Contents vii

FM.qxd 5/21/2007 5:18 PM Page vii

EON
PreMedia

CONFIRMING PGS

7-4 Design of Control Unit 233
Microprogram Sequencer 234
Problems 237
References 240

C H A P T E R E I G H T

CCeennttrraall PPrroocceessssiinngg UUnniitt 243

8-1 Introduction 243
8-2 General Register Organization 244

Control Word 245
Examples of Microoperations 248

8-3 Stack Organization 249
Register Stack 249
Memory Stack 251
Reverse Polish Notation 253
Evaluation of Arithmetic Expressions 255

8-4 Instruction Formats 257
Three-Address Instructions 260
Two-Address Instructions 260
One-Address Instructions 261
Zero-Address Instructions 261
RISC Instructions 261

8-5 Addressing Modes 262
Numerical Example 266

8-6 Data Transfer and Manipulation 268
Data Transfer Instructions 269
Data Manipulation Instructions 270
Arithmetic Instructions 271
Logical and Bit Manipulation Instructions 272
Shift Instructions 273

8-7 Program Control 275
Status Bit Conditions 276
Conditional Branch Instructions 277
Subroutine Call and Return 280
Program Interrupt 281
Types of Interrupts 283

8-8 Reduced Instruction Set Computer (RISC) 284
CISC Characteristics 285
RISC Characteristics 286

viii Contents

FM.qxd 5/21/2007 5:18 PM Page viii

EON
PreMedia

CONFIRMING PGS

Overlapped Register Windows 287
Berkeley RISC I 290
Problems 293
References 299

C H A P T E R N I N E

PPiippeelliinnee aanndd VVeeccttoorr PPrroocceessssiinngg 301

9-1 Parallel Processing 301
9-2 Pipelining 304

General Considerations 306
9-3 Arithmetic Pipeline 309
9-4 Instruction Pipeline 312

Example: Four-Segment Instruction Pipeline 313
Data Dependency 315
Handling of Branch Instructions 316

9-5 RISC Pipeline 317
Example: Three-Segment Instruction Pipeline 318
Delayed Load 319
Delayed Branch 320

9-6 Vector Processing 321
Vector Operations 323
Matrix Multiplication 324
Memory Interleaving 326
Superscalar Processors 327
Supercomputers 328

9-7 Array Processors 329
Attached Array Processor 329
SIMD Array Processor 330
Problems 331
References 333

C H A P T E R T E N

CCoommppuutteerr AArriitthhmmeettiicc 335

10-1 Introduction 335
10-2 Addition and Subtraction 336

Addition and Subtraction with
Signed-Magnitude Data 337

Contents ix

FM.qxd 5/21/2007 5:18 PM Page ix

EON
PreMedia

CONFIRMING PGS

Hardware Implementation 338
Hardware Algorithm 339
Addition and Subtraction with

Signed-2’s Complement Data 340
10-3 Multiplication Algorithms 342

Hardware Implementation for
Signed-Magnitude Data 343

Hardware Algorithm 344
Booth Multiplication Algorithm 345
Array Multiplier 348

10-4 Division Algorithms 350
Hardware Implementation for

Signed-Magnitude Data 351
Divide Overflow 353
Hardware Algorithm 354
Other Algorithms 355

10-5 Floating-Point Arithmetic Operations 356
Basic Considerations 356
Register Configuration 359
Addition and Subtraction 360
Multiplication 362
Division 364

10-6 Decimal Arithmetic Unit 365
BCD Adder 367
BCD Subtraction 370

10-7 Decimal Arithmetic Operations 371
Addition and Subtraction 373
Multiplication 373
Division 376
Floating-Point Operations 378
Problems 378
References 382

C H A P T E R E L E V E N

IInnppuutt––OOuuttppuutt OOrrggaanniizzaattiioonn 383

11-1 Peripheral Devices 383
ASCII Alphanumeric Characters 385

11-2 Input–Output Interface 387
I/O Bus and Interface Modules 388
I/O versus Memory Bus 389

x Contents

FM.qxd 5/21/2007 5:18 PM Page x

EON
PreMedia

CONFIRMING PGS

Isolated versus Memory-Mapped I/O 390
Example of I/O Interface 391

11-3 Asynchronous Data Transfer 393
Strobe Control 394
Handshaking 395
Asynchronous Serial Transfer 398
Asynchronous Communication Interface 400
First-In, First-Out Buffer 402

11-4 Modes of Transfer 404
Example of Programmed I/O 405
Interrupt-Initiated I/O 408
Software Considerations 408

11-5 Priority Interrupt 409
Daisy-Chaining Priority 410
Parallel Priority Interrupt 411
Priority Encoder 413
Interrupt Cycle 414
Software Routines 415
Initial and Final Operations 416

11-6 Direct Memory Access (DMA) 417
DMA Controller 418
DMA Transfer 420

11-7 Input–Output Processor (IOP) 422
CPU—IOP Communication 424
IBM 370 I/O Channel 425
Intel 8089 IOP 429

11-8 Serial Communication 431
Character-Oriented Protocol 434
Transmission Example 435
Data Transparency 438
Bit-Oriented Protocol 439
Problems 441
References 444

C H A P T E R T W E L V E

MMeemmoorryy OOrrggaanniizzaattiioonn 447

12-1 Memory Hierarchy 447
12-2 Main Memory 450

RAM and ROM Chips 451

Contents xi

FM.qxd 5/21/2007 5:18 PM Page xi

EON
PreMedia

CONFIRMING PGS

Memory Address Map 452
Memory Connection to CPU 454

12-3 Auxiliary Memory 454
Magnetic Disks 456
Magnetic Tape 457

12-4 Associative Memory 458
Hardware Organization 459
Match Logic 461
Read Operation 462
Write Operation 463

12-5 Cache Memory 464
Associative Mapping 466
Direct Mapping 467
Set-Associative Mapping 469
Writing into Cache 470
Cache Initialization 471

12-6 Virtual Memory 471
Address Space and Memory Space 472
Address Mapping Using Pages 474
Associative Memory Page Table 476
Page Replacement 477

12-7 Memory Management Hardware 478
Segmented-Page Mapping 479
Numerical Example 481
Memory Protection 484
Problems 485
References 488

C H A P T E R T H I R T E E N

MMuullttiipprroocceessssoorrss 491

13-1 Characteristics of Multiprocessors 491
13-2 Interconnection Structures 493

Time-Shared Common Bus 493
Multiport Memory 495
Crossbar Switch 496
Multistage Switching Network 498
Hypercube Interconnection 500

13-3 Interprocessor Arbitration 502
System Bus 502

xii Contents

FM.qxd 5/21/2007 5:18 PM Page xii

EON
PreMedia

CONFIRMING PGS

Serial Arbitration Procedure 504
Parallel Arbitration Logic 505
Dynamic Arbitration Algorithms 507

13-4 Interprocessor Communication
and Synchronization 507
Interprocessor Synchronization 509
Mutual Exclusion with a Semaphore 509
Problems 511
References 512

Index 513

Contents xiii

FM.qxd 5/21/2007 5:18 PM Page xiii

EON
PreMedia

CONFIRMING PGS

FM.qxd 5/21/2007 5:18 PM Page xiv

This page is intentionally left blank.

EON
PreMedia

CONFIRMING PGS

This book deals with computer architecture as well as computer organization and
design. Computer architecture is concerned with the structure and behavior of
the various functional modules of the computer and how they interact to provide
the processing needs of the user. Computer organization is concerned with the
way the hardware components are connected together to form a computer
system. Computer design is concerned with the development of the hardware for
the computer taking into consideration a given set of specifications.

The book provides the basic knowledge necessary to understand the
hardware operation of digital computers and covers the three subjects associ-
ated with computer hardware. Chapters 1 through 4 present the various digital
components used in the organization and design of digital computers.
Chapters 5 through 7 show the detailed steps that a designer must go through
in order to design an elementary basic computer. Chapters 8 through 10 deal
with the organization and architecture of the central processing unit. Chapters
11 and 12 present the organization and architecture of input–output and
memory. Chapter 13 introduces the concept of multiprocessing. The plan of
the book is to present the simpler material first and introduce the more
advanced subjects later. Thus, the first seven chapters cover material needed
for the basic understanding of computer organization, design, and programming
of a simple digital computer. The last six chapters present the organization and
architecture of the separate functional units of the digital computer with an
emphasis on more advanced topics.

The material in the third edition is organized in the same manner as in
the second edition and many of the features remain the same. The third
edition, however, offers several improvements over the second edition. All
chapters except two (6 and 10) have been completely revised to bring the
material up to date and to clarify the presentation. Two new chapters were
added: chapter 9 on pipeline and vector processing, and chapter 13 on
multiprocessors. Two sections deal with the reduced instruction set computer
(RISC). Chapter 5 has been revised completely to simplify and clarify the
design of the basic computer. New problems have been formulated for eleven
of the thirteen chapters.

Preface

xv

FM.qxd 5/21/2007 5:18 PM Page xv

EON
PreMedia

CONFIRMING PGS

The physical organization of a particular computer including its registers,
the data flow, the microoperations, and control functions can be described
symbolically by means of a hardware description language. In this book we
develop a simple register transfer language and use it to specify various
computer operations in a concise and precise manner. The relation of the
register transfer language to the hardware organization and design of digital
computers is fully explained.

The book does not assume prior knowledge of computer hardware and
the material can be understood without the need of prerequisites. However,
some experience in assembly language programming with a microcomputer
will make the material easier to understand. Chapters 1 through 3 can be
skipped if the reader is familiar with digital logic design.

The following is a brief description of the subjects that are covered in
each chapter with an emphasis on the revisions that were made in the third
edition.

CChhaapptteerr 11 introduces the fundamental knowledge needed for the design
of digital systems constructed with individual gates and flip-flops. It covers
Boolean algebra, combinational circuits, and sequential circuits. This provides
the necessary background for understanding the digital circuits to be presented.

CChhaapptteerr 22 explains in detail the logical operation of the most common
standard digital components. It includes decoders, multiplexers, registers,
counters, and memories. These digital components are used as building blocks
for the design of larger units in the chapters that follow.

CChhaapptteerr 33 shows how the various data types found in digital computers
are represented in binary form in computer registers. Emphasis is on the rep-
resentation of numbers employed in arithmetic operations, and on the binary
coding of symbols used in data processing.

CChhaapptteerr 44 introduces a register transfer language and shows how it is
used to express microoperations in symbolic form. Symbols are defined for
arithmetic, logic, and shift microoperations. A composite arithmetic logic shift
unit is developed to show the hardware design of the most common micro-
operations.

CChhaapptteerr 55 presents the organization and design of a basic digital com-
puter. Although the computer is simple compared to commercial computers,
it nevertheless encompasses enough functional capabilities to demonstrate the
power of a stored program general purpose device. Register transfer language
is used to describe the internal operation of the computer and to specify the
requirements for its design. The basic computer uses the same set of instruc-
tions as in the second edition but its hardware organization and design has
been completely revised. By going through the detailed steps of the design
presented in this chapter, the student will be able to understand the inner
workings of digital computers.

CChhaapptteerr 66 utilizes the twenty five instructions of the basic computer to
illustrate techniques used in assembly language programming. Programming
examples are presented for a number of data processing tasks. The relationship

xvi Preface

FM.qxd 5/21/2007 5:18 PM Page xvi

EON
PreMedia

CONFIRMING PGS

between binary programs and symbolic code is explained by examples. The
basic operations of an assembler are presented to show the translation from
symbolic code to an equivalent binary program.

CChhaapptteerr 77 introduces the concept of microprogramming. A specific
microprogrammed control unit is developed to show by example how to write
microcode for a typical set of instructions. The design of the control unit is
carried-out in detail including the hardware for the microprogram sequencer.

CChhaapptteerr 88 deals with the central processing unit (CPU). An execution unit
with common buses and an arithmetic logic unit is developed to show the gen-
eral register organization of a typical CPU. The operation of a memory stack is
explained and some of its applications are demonstrated. Various instruction
formats are illustrated together with a variety of addressing modes. The most
common instructions found in computers are enumerated with an explanation
of their function. The last section introduces the reduced instruction set computer
(RISC) concept and discusses its characteristics and advantages.

CChhaapptteerr 99 on pipeline and vector processing is a new chapter in the third
edition. (The material on arithmetic operations from the second edition has
been moved to Chapter 10.) The concept of pipelining is explained and the
way it can speed-up processing is illustrated with several examples. Both arith-
metic and instruction pipeline is considered. It is shown how RISC processors
can achieve single-cycle instruction execution by using an efficient instruction
pipeline together with the delayed load and delayed branch techniques.
Vector processing is introduced and examples are shown of floating-point
operations using pipeline procedures.

CChhaapptteerr 1100 presents arithmetic algorithms for addition, subtraction, mul-
tiplication, and division and shows the procedures for implementing them
with digital hardware. Procedures are developed for signed-magnitude and
signed-2’s complement fixed-point numbers, for floating-point binary num-
bers, and for binary coded decimal (BCD) numbers. The algorithms are
presented by means of flowcharts that use the register transfer language to
specify the sequence of microoperations and control decisions required for
their implementation.

CChhaapptteerr 1111 discusses the techniques that computers use to communicate
with input and output devices. Interface units are presented to show the way
that the processor interacts with external peripherals. The procedure for asyn-
chronous transfer of either parallel or serial data is explained. Four modes of
transfer are discussed: programmed I/O, interrupt initiated transfer, direct
memory access, and the use of input–output processors. Specific examples
illustrate procedures for serial data transmission.

CChhaapptteerr 1122 introduces the concept of memory hierarchy, composed
of cache memory, main memory, and auxiliary memory such as magnetic
disks. The organization and operation of associative memories is explained
in detail. The concept of memory management is introduced through the
presentation of the hardware requirements tor a cache memory and a virtual
memory system.

Preface xvii

FM.qxd 5/21/2007 5:18 PM Page xvii

EON
PreMedia

CONFIRMING PGS

CChhaapptteerr 1133 presents the basic characteristics of mutiprocessors. Various
interconnection structures are presented. The need for interprocessor arbitration,
communication, and synchronization is discussed.

Every chapter includes a set of problems and a list of references. Some
of the problems serve as exercises for the material covered in the chapter.
Others are of a more advanced nature and are intended to provide practice in
solving problems associated with computer hardware architecture and design.
A solutions manual is available for the instructor from the publisher.

The book is suitable for a course in computer hardware systems in an
electrical engineering, computer engineering, or computer science department.
Parts of the book can be used in a variety of ways: as a first course in computer
hardware by covering Chapters 1 through 7; as a course in computer organiza-
tion and design with previous knowledge of digital logic design by reviewing
Chapter 4 and then covering chapters 5 through 13; as a course in computer
organization and architecture that covers the five functional units of digital
computers including control (Chapter 7), processing unit (Chapters 8 and 9),
arithmetic operations (Chapter 10), input–output (Chapter 11), and memory
(Chapter 12). The book is also suitable for self-study by engineers and scientists
who need to acquire the basic knowledge of computer hardware architecture.

Acknowledgments

My thanks goes to those who reviewed the text: particularly Professor Thomas
L. Casavant of the University of Iowa; Professor Murray R. Berkowitz of
George Mason University; Professor Cem Ersoy of Brooklyn Polytechnic
University; Professor Upkar Varshney of the University of Missouri, Kansas
City; Professor Karan Watson of Texas A&M University, and Professor Scott
F. Midkiff of the Virginia Polytechnic Institute.

M. Morris Mano

I am grateful to K. Raja Kumar, Assistant Professor, Department of Computer
Science and Systems Engineering, Andhra University, Visakhapatnam, for
typing and incorporating the changes made in the text. I am also thankful to
my wife, P. Rama Lakshmi, and children, Ravi Kumar and Rajani, for their
support.

P. Seetha Ramiah

The publishers would like to thank P. Seetha Ramaiah, Professor, Department
of Computer Science and Systems Engineering, Andhra University,
Visakhapatnam, for his valuable suggestions and inputs in enhancing the
content of this book to suit the requirements of Indian universities.

xviii Preface

FM.qxd 5/21/2007 5:18 PM Page xviii

EON
PreMedia

CONFIRMING PGS

IN THIS CHAPTER

1-1 Digital Computers
1-2 Logic Gates
1-3 Boolean Algebra
1-4 Map Simplification
1-5 Combinational Circuits
1-6 Flip-Flops
1-7 Sequential Circuits

1-1 Digital Computers
The digital computer is a digital system that performs various computational tasks.
The word digital implies that the information in the computer is represented by
variables that take a limited number of discrete values. These values are processed
internally by components that can maintain a limited number of discrete states.
The decimal digits 0, 1, 2, . . . , 9, for example, provide 10 discrete values. The first
electronic digital computers, developed in the late 1940s, were used primarily for
numerical computations. In this case the discrete elements are the digits. From this
application the term digital computer has emerged. In practice, digital computers
function more reliably if only two states are used. Because of the physical restric-
tion of components, and because human logic tends to be binary (i.e., true-or-false,
yes-or-no statements), digital components that are constrained to take discrete val-
ues are further constrained to take only two values and are said to be binary.

Digital computers use the binary number system, which has two digits: 0 and
1. A binary digit is called a bit. Information is represented in digital computers in
groups of bits. By using various coding techniques, groups of bits can be made to
represent not only binary numbers but also other discrete symbols, such as deci-
mal digits or letters of the alphabet. By judicious use of binary arrangements and
by using various coding techniques, the groups of bits are used to develop com-
plete sets of instructions for performing various types of computations.

1

C H A P T E R O N E

Digital Logic
Circuits

Chapter01.qxd 2/2/2007 6:04 PM Page 1

EON
PreMedia

CONFIRMING PGS

In contrast to the common decimal numbers that employ the base 10 sys-
tem, binary numbers use a base 2 system with two digits: 0 and 1. The decimal
equivalent of a binary number can be found by expanding it into a power series
with a base of 2. For example, the binary number 1001011 represents a quantity
that can be converted to a decimal number by multiplying each bit by the base
2 raised to an integer power as follows:

1 � 26 � 0 � 25 � 0 � 24 � 1 � 23 � 0 � 22 � 1 � 21 � 1 � 20 � 75

The seven bits 1001011 represent a binary number whose decimal equivalent is
75. However, this same group of seven bits represents the letter K when used
in conjunction with a binary code for the letters of the alphabet. It may also
represent a control code for specifying some decision logic in a particular digi-
tal computer. In other words, groups of bits in a digital computer are used to rep-
resent many different things. This is similar to the concept that the same letters
of an alphabet are used to construct different languages, such as English and
French.

A computer system is sometimes subdivided into two functional entities:
hardware and software. The hardware of the computer consists of all the elec-
tronic components and electromechanical devices that comprise the physical
entity of the device. Computer software consists of the instructions and data that
the computer manipulates to perform various data-processing tasks. A sequence of
instructions for the computer is called a program. The data that are manipulated by
the program constitute the data base.

A computer system is composed of its hardware and the system software
available for its use. The system software of a computer consists of a collection
of programs whose purpose is to make more effective use of the computer.
The programs included in a systems software package are referred to as the
operating system. They are distinguished from application programs written by
the user for the purpose of solving particular problems. For example, a high-
level language program written by a user to solve particular data-processing
needs is an application program, but the compiler that translates the high-level
language program to machine language is a system program. The customer
who buys a computer system would need, in addition to the hardware, any
available software needed for effective operation of the computer. The system
software is an indispensable part of a total computer system. Its function is to
compensate for the differences that exist between user needs and the capability
of the hardware.

The hardware of the computer is usually divided into three major parts, as
shown in Fig. 1-1. The central processing unit (CPU) contains an arithmetic and
logic unit for manipulating data, a number of registers for storing data, and
control circuits for fetching and executing instructions. The memory of a computer
contains storage for instructions and data. It is called a random-access memory
(RAM) because the CPU can access any location in memory at random and
retrieve the binary information within a fixed interval of time. The input and

2 CHAPTER ONE Digital Logic Circuits

program

computer hardware

Chapter01.qxd 2/2/2007 6:04 PM Page 2

EON
PreMedia

CONFIRMING PGS

output processor (IOP) contains electronic circuits for communicating and
controlling the transfer of information between the computer and the outside
world. The input and output devices connected to the computer include keyboards,
printers, terminals, magnetic disk drives, and other communication devices.

This book provides the basic knowledge necessary to understand the hard-
ware operations of a computer system. The subject is sometimes considered
from three different points of view, depending on the interest of the investigator.
When dealing with computer hardware it is customary to distinguish between
what is referred to as computer organization, computer design, and computer
architecture.

Computer organization is concerned with the way the hardware components
operate and the way they are connected together to form the computer system.
The various components are assumed to be in place and the task is to investigate
the organizational structure to verify that the computer parts operate as intended.

Computer design is concerned with the hardware design of the computer.
Once the computer specifications are formulated, it is the task of the designer to
develop hardware for the system. Computer design is concerned with the deter-
mination of what hardware should be used and how the parts should be con-
nected. This aspect of computer hardware is sometimes referred to as computer
implementation.

Computer architecture is concerned with the structure and behavior of the com-
puter as seen by the user. It includes the information, formats, the instruction set,
and techniques for addressing memory. The architectural design of a computer sys-
tem is concerned with the specifications of the various functional modules, such as
processors and memories, and structuring them together into a computer system.

Two basic types of computer architectures are von Neumann architecture
and Harvard architecture. von Neumann architecture describes a general frame-
work, or structure, that a computer’s hardware, programming, and data should
follow. Although other structures for computing have been devised and imple-
mented, the vast majority of computers in use today operate according to the von

SECTION 1-1 Digital Computers 3

Random-access memory
(RAM)

Central processing unit
CPU

Input-output processor
(IOP)

Output
devices

Input
devices

Figure 1-1 Block diagram of a digital computer.

computer
organization

computer
design

computer
architecture

Chapter01.qxd 2/2/2007 6:04 PM Page 3

EON
PreMedia

CONFIRMING PGS

4 CHAPTER ONE Digital Logic Circuits

Neumann architecture. Von Neumann envisioned the structure of a computer sys-
tem as being composed of the following components:

1. the central arithmetic unit, which today is called the arithmetic-logic unit
(ALU). This unit performs the computer’s computational and logical
functions;

2. memory; more specifically, the computer’s main, or fast, memory, such as
random access memory (RAM);

3. a control unit that directs other components of the computer to perform
certain actions, such as directing the fetching of data or instructions from
memory to be processed by the ALU; and

4. man-machine interfaces; i.e., input and output devices, such as a keyboard
for input and display monitor for output, as shown in Fig. 1.1.

Of course, computer technology has developed extensively since von Neumann’s
time. For instance, due to integrated circuitry and miniaturization, the ALU and
control unit have been integrated onto the same microprocessor “chip”, becoming
an integrated part of the computer’s central processing unit (CPU). The most note-
worthy concept contained in von Neumann’s first report was most likely that of the
stored-program principle. This principle holds that data, as well as the instructions
used to manipulate that data, should be stored together in the same memory area
of the computer and instructions are carried out sequentially, one instruction at a
time. The sequential execution of programming imposes a sort of ‘speed limit’ on
program execution, since only one instruction at a time can be handled by the
computer’s processor. It means that the CPU can be either reading an instruction
or reading/writing data from/to the memory. Both cannot occur at the same time
since the instructions and data use the same signal pathways and memory.

The Harvard architecture uses physically separate storage and signal path-
ways for their instructions and data. The term originated from the Harvard Mark I
relay-based computer, which stored instructions on punched tape (24-bits wide)
and data in relay latches (23-digits wide). In a computer with Harvard architec-
ture, the CPU can read both an instruction and data from memory at the same
time, leading to double the memory bandwidth.

An example of computer architecture based on the von Neumann architec-
ture is the desktop personal computer. Microcontroller (single-chip microcom-
puter)-based computer systems and DSP (Digital Signal Processor)-based computer
systems are examples for Harvard architecture.

The book deals with all three subjects associated with computer hardware.
In Chapters 1 through 4 we present the various digital components used in the
organization and design of computer systems. Chapters 5 through 7 cover the
steps that a designer must go through to design and program an elementary digi-
tal computer. Chapters 8 and 9 deal with the architecture of the central process-
ing unit. In Chapters 11 and 12 we present the organization and architecture of the
input—output processor and the memory unit.

Chapter01.qxd 2/2/2007 6:04 PM Page 4

EON
PreMedia

CONFIRMING PGS

1-2 Logic Gates
Binary information is represented in digital computers by physical quantities
called signals. Electrical signals such as voltages exist throughout the computer in
either one of two recognizable states. The two states represent a binary variable
that can be equal to 1 or 0. For example, a particular digital computer may employ
a signal of 3 volts to represent binary 1 and 0.5 volt to represent binary 0. The input
terminals of digital circuits accept binary signals of 3 and 0.5 volts and the circuits
respond at the output terminals with signals of 3 and 0.5 volts to represent binary
input and output corresponding to 1 and 0, respectively.

Binary logic deals with binary variables and with operations that assume a log-
ical meaning. It is used to describe, in algebraic or tabular form, the manipulation
and processing of binary information. The manipulation of binary information is
done by logic circuits called gates. Gates are blocks of hardware that produce signals
of binary 1 or 0 when input logic requirements are satisfied. A variety of logic gates
are commonly used in digital computer systems. Each gate has a distinct graphic
symbol and its operation can be described by means of an algebraic expression. The
input—output relationship of the binary variables for each gate can be represented
in tabular form by a truth table. The basic logic gates are AND and inclusive OR
with multiple inputs and NOT with a single input. Each gate with more than one
input is sensitive to either logic 0 or logic 1 input at any one of its inputs, generating
the output according to its function. For example, a multi-input AND gate is sensi-
tive to logic 0 on any one of its inputs, irrespective of any values at other inputs.

The names, graphic symbols, algebraic functions, and truth tables of eight logic
gates are listed in Fig. 1-2, with applicable sensitivity input values. Each gate has one
or two binary input variables designated by A and B and one binary output variable
designated by x. The AND gate produces the AND logic function: that is, the out-
put is 1 if input A and input B are both equal to 1; otherwise, the output is 0. These
conditions are also specified in the truth table for the AND gate. The table shows
that output x is 1 only when both input A and input B are 1. The algebraic operation
symbol of the AND function is the same as the multiplication symbol of ordinary
arithmetic. We can either use a dot between the variables or concatenate the vari-
ables without an operation symbol between them. AND gates may have more than
two inputs, and by definition, the output is 1 if and only if all inputs are 1.

The OR gate produces the inclusive-OR function; that is, the output is 1 if
input A or input B or both inputs are 1; otherwise, the output is 0. The algebraic
symbol of the OR function is �, similar to arithmetic addition. OR gates may
have more than two inputs, and by definition, the output is 1 if any input is 1.

The inverter circuit inverts the logic sense of a binary signal. It produces the
NOT, or complement, function. The algebraic symbol used for the logic comple-
ment is either a prime or a bar over the variable symbol. In this book we use a
prime for the logic complement of a binary variable, while a bar over the letter is
reserved for designating a complement microoperation as defined in Chap. 4.

The small circle in the output of the graphic symbol of an inverter designates
a logic complement. A triangle symbol by itself designates a buffer circuit. A

SECTION 1-2 Logic Gates 5

OR

inverter

gates

Chapter01.qxd 2/2/2007 6:04 PM Page 5

EON
PreMedia

CONFIRMING PGS

x = (A + B)'

x = A + BA x
B

A B x

0 0 0
0 1 1
1 0 1
1 1 1

Not Applicable

Not Applicable

Not Applicable

0

1

0

1

AND

OR

Inverter

Buffer

NAND

NOR

Exclusive-OR
(XOR)

Name
Graphic
symbol

Algebraic
function

Truth
table

Input
sensitivity

A
B

x or
x = AB

x = A•B
A B x

0 0 0
0 1 0
1 0 0
1 1 1

x x = A'A

A x

0 1
1 0

A x x = A
A x

0 0
1 1

A
B

x x = (AB)'

A B x

0 0 1
0 1 1
1 0 1
1 1 0

A x x = (A + B)'
B

A B x

0 0 1
0 1 0
1 0 0
1 1 0

xA
B

x = A + B

x = A'B + AB'
or

A B x

0 0 0
0 1 1
1 0 1
1 1 0

or Not Applicable
Exclusive-NOR
or equivalence

A
B x = A'B + AB'

A B x

0 0 1
0 1 0
1 0 0
1 1 1

x

6 CHAPTER ONE Digital Logic Circuits

Figure 1-2 Digital logic gates with applicable input sensitivity values.

Chapter01.qxd 2/2/2007 6:04 PM Page 6

EON
PreMedia

CONFIRMING PGS

buffer does not produce any particular logic function since the binary value of the
output is the same as the binary value of the input. This circuit is used merely for
power amplification. For example, a buffer that uses 3 volts for binary 1 will pro-
duce an output of 3 volts when its input is 3 volts. However, the amount of elec-
trical power needed at the input of the buffer is much less than the power
produced at the output of the buffer. The main purpose of the buffer is to drive
other gates that require a large amount of power.

The NAND function is the complement of the AND function, as indicated
by the graphic symbol, which consists of an AND graphic symbol followed by a
small circle. The designation NAND is derived from the abbreviation of
NOT-AND. The NOR gate is the complement of the OR gate and uses an OR
graphic symbol followed by a small circle. Both NAND and NOR gates may have
more than two inputs, and the output is always the complement of the AND or
OR function, respectively.

The exclusive-OR gate has a graphic symbol similar to the OR gate except for
the additional curved line on the input side. The output of this gate is 1 if any input
is 1 but excludes the combination when both inputs are 1. The exclusive-OR func-
tion has its own algebraic symbol or can be expressed in terms of AND, OR, and
complement operations as shown in Fig. 1-2. The exclusive-NOR is the complement
of the exclusive-OR, as indicated by the small circle in the graphic symbol. The out-
put of this gate is 1 only if both inputs are equal to 1 or both inputs are equal to 0. A
more fitting name for the exclusive-OR operation would be an odd function; that is,
its output is 1 if an odd number of inputs are 1. Thus in a three-input exclusive-OR
(odd) function, the output is 1 if only one input is 1 or if all three inputs are 1. The
exclusive-OR and exclusive-NOR gates are commonly available with two inputs,
and only seldom are they found with three or more inputs.

1-3 Boolean Algebra
A Boolean algebra is an algebra (set, operations, elements) consisting of a set B
with �2 elements, together with three operations—the AND operation � (Boolean
product), the OR operation + (Boolean sum), and the NOT operation� (comple-
ment)—defined on the set, such that for any element a, b, c, . . . of set B, a � b, a �
b, and a� are in B. Consider the four-element Boolean algebra B4 � ({0, x, y, 1}; �,
�, �; 0, 1). The AND, OR, and NOT operations are described by the following
tables:

� 0 x y 1 � 0 x y 1 �

0 0 0 0 0 0 0 x y 0 0 1
x 0 x 0 x x x x 1 1 x y
y 0 0 y y y y 1 y 1 y x
1 0 x y 1 1 1 1 1 1 1 0

SECTION 1-3 Boolean Algebra 7

NAND

NOR

exclusive-OR

Chapter01.qxd 2/2/2007 6:04 PM Page 7

EON
PreMedia

CONFIRMING PGS

The two-element Boolean algebra B2 among all other Bi, where i > 2, defined as
switching algebra, is the most useful. Switching algebra consists of two elements
represented by 1 and 0 as the largest number and the smallest number respectively.

*Boolean algebra is a switching algebra that deals with binary variables and
logic operations. The variables are designated by letters such as A, B, x, and y. The
three basic logic operations are AND, OR, and complement. A Boolean function
can be expressed algebraically with binary variables, the logic operation symbols,
parentheses, and equal sign. For a given value of the variables, the Boolean func-
tion can be either 1 or 0. Consider, for example, the Boolean function

F � x � y�z

The function F is equal to 1 if x is 1 or if both y� and z are equal to 1; F is equal to
0 otherwise. But saying that y� � 1 is equivalent to saying that y � 0 since y� is the
complement of y. Therefore, we may say that F is equal to 1 if x � 1 or if yz � 01.
The relationship between a function and its binary variables can be represented
in a truth table. To represent a function in a truth table we need a list of the 2n com-
binations of the n binary variables. As shown in Fig. l-3(a), there are eight possi-
ble distinct combinations for assigning bits to the three variables x, y, and z . The
function F is equal to 1 for those combinations where x � 1 or yz � 01; it is equal
to 0 for all other combinations.

A Boolean function can be transformed from an algebraic expression into
a logic diagram composed of AND, OR, and inverter gates. The logic diagram
for F is shown in Fig. l-3(b). There is an inverter for input y to generate its

8 CHAPTER ONE Digital Logic Circuits

Boolean function

truth table

logic diagram

x

y F

z

(b) Logic diagram

x y z F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

(a) Truth table

Figure 1-3 Truth table and logic diagram for F � x � y�z.

Consider the two-element Boolean algebra B2 � ({0, 1}; �, �, �; 0, 1). The three
operations. (AND), + (OR), '(NOT) are defined as follows:

� 0 1 � 0 1 �

0 0 0 0 0 1 0 1
1 0 1 1 1 1 1 0

*Two Element

Chapter01.qxd 2/2/2007 6:05 PM Page 8

EON
PreMedia

CONFIRMING PGS

complement y�. There is an AND gate for the term y�z , and an OR gate is used to
combine the two terms. In a logic diagram, the variables of the function are taken
to be the inputs of the circuit, and the variable symbol of the function is taken as
the output of the circuit.

The purpose of Boolean algebra is to facilitate the analysis and design of dig-
ital circuits. It provides a convenient tool to:

1. Express in algebraic form a truth table relationship between binary vari-
ables.

2. Express in algebraic form the input—output relationship of logic diagrams.
3. Find simpler circuits for the same function.

A Boolean function specified by a truth table can be expressed algebraically in
many different ways. Two ways of forming Boolean expressions are canonical and
non-canonical forms. Canonical forms express all binary variables in every prod-
uct (AND) or sum (OR) term of the Boolean function. To determine the canoni-
cal sum-of-products form for a Boolean function F (A, B, C) � A�B � C� � ABC,
which is in non-canonical form, the following steps are used:

F � A�B � C� � ABC

� A�B(C � C�) � (A � A�)(B � B�)C � � ABC,

where x � x� � 1 is a basic identity of Boolean algebra

� A�BC � A�BC � � ABC � � AB�C � � A�BC � � A�B�C � � ABC

� A�BC � A�BC � � ABC � � AB�C � � A�B�C � � ABC

By manipulating a Boolean expression according to Boolean algebra rules, one
may obtain a simpler expression that will require fewer gates. To see how this is
done, we must first study the manipulative capabilities of Boolean algebra.

Table 1-1 lists the most basic identities of Boolean algebra. All the identi-
ties in the table can be proven by means of truth tables. The first eight identi-
ties show the basic relationship between a single variable and itself, or in

SECTION 1-3 Boolean Algebra 9

TABLE 1-1 Basic Identities of Boolean Algebra

(1) x � 0 � x (2) x � 0 � 0
(3) x � 1 � 1 (4) x � 1 � x
(5) x � x � x (6) x � x � x
(7) x � x� � 1 (8) x � x� � 0
(9) x � y � y � x (10) xy � yx

(11) x � (y � z) � (x � y) � z (12) x (yz) � (xy)z
(13) x (y � z) � xy � xz (14) x � yx � (x � y)(x � z)
(15) (x � y)� � x�y� (16) (xy)� � x� � y�
(17) (x�)� � x

Chapter01.qxd 2/2/2007 6:05 PM Page 9

EON
PreMedia

CONFIRMING PGS

conjunction with the binary constants 1 and 0. The next five identities (9
through 13) are similar to ordinary algebra. Identity 14 does not apply in ordi-
nary algebra but is very useful in manipulating Boolean expressions. Identities
15 and 16 are called DeMorgan’s theorems and are discussed below. The last
identity states that if a variable is complemented twice, one obtains the original
value of the variable.

The identities listed in the table apply to single variables or to Boolean func-
tions expressed in terms of binary variables. For example, consider the following
Boolean algebra expression:

AB� � C�D � AB� � C�D

By letting x � AB� � C �D the expression can be written as x � x. From identity
5 in Table 1-1 we find that x � x � x. Thus the expression can be reduced to only
two terms:

AB� � C�D � A�B � C�D � AB� � CD

DeMorgan’s theorem is very important in dealing with NOR and NAND
gates. It states that a NOR gate that performs the (x � y)� function is equivalent to
the function x�y�. Similarly, a NAND function can be expressed by either (xy)� or
(x� � y�). For this reason the NOR and NAND gates have two distinct graphic
symbols, as shown in Figs. 1-4 and 1-5. Instead of representing a NOR gate with
an OR graphic symbol followed by a circle, we can represent it by an AND
graphic symbol preceded by circles in all inputs. The invert-AND symbol for the
NOR gate follows from DeMorgan’s theorem and from the convention that small
circles denote complementation. Similarly, the NAND gate has two distinct sym-
bols, as shown in Fig. 1-5. NAND and NOR gates can be used to implement any
Boolean function, including basic logic gates such as AND, OR, and NOT. Hence,
NAND and NOR gates are called as Universal gates.

10 CHAPTER ONE Digital Logic Circuits

DeMorgan’s
theorem

(x �y �z)' x' y' z' � (x �y �z)'
x
y
z

x
y
z

(a) OR-invert (b) invert-AND

Figure 1-4 Two graphic symbols for NOR gate.

(x y z)' x' � y' � z' � (xyz)'
x
y
z

x
y
z

(a) AND-invert (b) invert-OR

Figure 1-5 Two graphic symbols for NAND gate.

Chapter01.qxd 2/2/2007 6:05 PM Page 10

EON
PreMedia

CONFIRMING PGS

To see how Boolean algebra manipulation is used to simplify digital circuits,
consider the logic diagram of Fig. l-6(a). The output of the circuit can be expressed
algebraically as follows:

F � ABC � ABC� � A�C

Each term corresponds to one AND gate, and the OR gate forms the logical sum
of the three terms. Two inverters are needed to complement A� and C�. The
expression can be simplified using Boolean algebra.

F � ABC � ABC� � A�C � AB(C � C�) � A�C � AB � A�C

Note that (C � C)� � 1 by identity 7 and AB � 1 � AB by identity 4 in Table 1-1.

SECTION 1-3 Boolean Algebra 11

(a) F = ABC + ABC ' + A'C

(b) F = AB + A'C

(c) F = AB + AC ' using NAND gates

F

A

B

C

F

A
B
C

F

A

B

C

Figure 1-6 Three logic diagrams for the same Boolean function.

Chapter01.qxd 2/2/2007 6:05 PM Page 11

EON
PreMedia

CONFIRMING PGS

The logic diagram of the simplified expression is drawn in Fig. l-6(b) and
Fig. l-6(c). It requires only four gates rather than the six gates used in the circuit of
Fig. l-6(a). The two circuits are equivalent and produce the same truth table
relationship between inputs A, B, C and output F.

Complement of a Function
The complement of a function F when expressed in a truth table is obtained by
interchanging l’s and O’s in the values of F in the truth table. When the function
is expressed in algebraic form, the complement of the function can be derived by
means of DeMorgan’s theorem. The general form of DeMorgan’s theorem can be
expressed as follows:

(x1 � x2 � x3 � . . . � xn)� � x1�x2�x3� . . .xn�

(x1x2x3
. . .xn)� � x1� � x2� � x3�� . . . � xn�

From the general DeMorgan�s theorem we can derive a simple procedure for
obtaining the complement of an algebraic expression. This is done by changing
all OR operations to AND operations and all AND operations to OR operations
and then complementing each individual letter variable. As an example, consider
the following expression and its complement:

F � AB � C�D� � B�D

F � � (A� � B�)(C � D)(B � D�)

The complement expression is obtained by interchanging AND and OR operations
and complementing each individual variable. Note that the complement of C�is C.

1-4 Map Simplification
The complexity of the logic diagram that implements a Boolean function is related
directly to the complexity of the algebraic expression from which the function is
implemented. The truth table representation of a function is unique, but the func-
tion can appear in many different forms when expressed algebraically. The expres-
sion may be simplified using the basic relations of Boolean algebra. However, this
procedure is sometimes difficult because it lacks specific rules for predicting each
succeeding step in the manipulative process. Two methods of simplifying Boolean
algebraic expressions are the map method and the tabular method. The map
method is used for functions upto six variables. To manipulate functions of a large
number of variables, the tabular method also known as the Quine-McCluskey
method, is used. If a function to be minimized is not in a canonical form, it must
first be converted into canonical form before applying Quine-McCluskey tabular

12 CHAPTER ONE Digital Logic Circuits

Chapter01.qxd 2/2/2007 6:05 PM Page 12

EON
PreMedia

CONFIRMING PGS

procedure. Another tabular method, known as the iterative consensus method,
begins the simplification process even if the function is not in a canonical form. The
map method provides a simple, straightforward procedure for simplifying Boolean
expressions. This method may be regarded as a pictorial arrangement of the truth
table which allows an easy interpretation for choosing the minimum number of
terms needed to express the function algebraically. The map method is also known
as the Karnaugh map or K-map.

Each combination of the variables in a truth table is called a minterm. For
example, the truth table of Fig. 1-3 contains eight minterms. When expressed in a
truth table a function of n variables will have 2n minterms, equivalent to the 2n

binary numbers obtained from n bits. A Boolean function is equal to 1 for some
minterms and to 0 for others. The information contained in a truth table may be
expressed in compact form by listing the decimal equivalent of those minterms
that produce a 1 for the function. For example, the truth table of Fig. 1-3 can be
expressed as follows:

F (x, y, z) � � (1, 4, 5, 6, 7)

The letters in parentheses list the binary variables in the order that they appear in
the truth table. The symbol � stands for the sum of the minterms that follow in
parentheses. The minterms that produce 1 for the function are listed in their dec-
imal equivalent. The minterms missing from the list are the ones that produce 0
for the function.

The map is a diagram made up of squares, with each square representing
one minterm. The squares corresponding to minterms that produce 1 for the func-
tion are marked by a 1 and the others are marked by a 0 or are left empty. By rec-
ognizing various patterns and combining squares marked by l’s in the map, it is
possible to derive alternative algebraic expressions for the function, from which
the most convenient may be selected.

The maps for functions of two, three, and four variables are shown in
Fig. 1-7. The number of squares in a map of n variables is 2n. The 2n minterms are
listed by an equivalent decimal number for easy reference. The minterm numbers
are assigned in an orderly arrangement such that adjacent squares represent
minterms that differ by only one variable. The variable names are listed across
both sides of the diagonal line in the corner of the map. The 0’s and l’s marked
along each row and each column designate the value of the variables. Each vari-
able under brackets contains half of the squares in the map where that variable
appears unprimed. The variable appears with a prime (complemented) in the
remaining half of the squares.

The minterm represented by a square is determined from the binary assign-
ments of the variables along the left and top edges in the map. For example,
minterm 5 in the three-variable map is 101 in binary, which may be obtained from
the 1 in the second row concatenated with the 01 of the second column. This
minterm represents a value for the binary variables A, B, and C, with A and C

SECTION 1-4 Map Simplification 13

minterm

Chapter01.qxd 2/2/2007 6:05 PM Page 13

EON
PreMedia

CONFIRMING PGS

being unprimed and B being primed (i.e., AB�C). On the other hand, minterm 5
in the four-variable map represents a minterm for four variables. The binary num-
ber contains the four bits 0101, and the corresponding term it represents is A�BC�D.

Minterms of adjacent squares in the map are identical except for one vari-
able, which appears complemented in one square and uncomplemented in the
adjacent square. According to this definition of adjacency, the squares at the
extreme ends of the same horizontal row are also to be considered adjacent.
The same applies to the top and bottom squares of a column. As a result, the four
corner squares of a map must also be considered to be adjacent.

A Boolean function represented by a truth table is plotted into the map by
inserting l’s in those squares where the function is 1. The squares containing l’s are
combined in groups of adjacent squares. These groups must contain a number of
squares that is an integral power of 2. Groups of combined adjacent squares may
share one or more squares with one or more groups. Each group of squares rep-
resents an algebraic term, and the OR of those terms gives the simplified algebraic
expression for the function. The following examples show the use of the map for
simplifying Boolean functions.

In the first example we will simplify the Boolean function

F (A, B, C) � � (3, 4, 6, 7)

14 CHAPTER ONE Digital Logic Circuits

0

0
B

B

A

AB
CD C

A

B

D

A

1

0 1

00

00 01 11 10

0 1 3 2

6754

12 13 15 14

101198

01

10

11

321

BC
B

C

A

A

0

00 01 11 10

1 3 2

4

0

1 5 7 6

(a) Two-variable map

(c) Four-variable map

(b) Three-variable map

Figure 1-7 Maps for two-, three-, and four-variable functions.

adjacent squares

Chapter01.qxd 2/2/2007 6:05 PM Page 14

EON
PreMedia

CONFIRMING PGS

SECTION 1-4 Map Simplification 15

A

C

B

1

1 11

Figure 1-8 Map for F(A, B, C) � � (3, 4, 6, 7).

The three-variable map for this function is shown in Fig. 1-8. There are four squares
marked with l’s, one for each minterm that produces 1 for the function. These squares
belong to minterms 3, 4, 6, and 7 and are recognized from Fig. l-7(b). Two adjacent
squares are combined in the third column. This column belongs to both B and C
and produces the term BC. The remaining two squares with l’s in the two corners
of the second row are adjacent and belong to row A and the two columns of C�,
so they produce the term AC�. The simplified algebraic expression for the func-
tion is the OR of the two terms:

F � BC � AC�

The second example simplifies the following Boolean function:

F (A, B, C) � � (0, 2, 4, 5, 6)

The five minterms are marked with l’s in the corresponding squares of the three-
variable map shown in Fig. 1-9. The four squares in the first and fourth columns
are adjacent and represent the term C �. The remaining square marked with a 1
belongs to minterm 5 and can be combined with the square of minterm 4 to pro-
duce the term AB�. The simplified function is

F � C � � AB�

1 1

C

111

B

A

Figure 1-9 Map for F(A, B, C) � � (3, 4, 6, 7).

Chapter01.qxd 2/2/2007 6:05 PM Page 15

EON
PreMedia

CONFIRMING PGS

The third example needs a four-variable map.

F (A, B, C, D) � � (0, 1, 2, 6, 8, 9, 10)

The area in the map covered by this four-variable function consists of the squares
marked with l’s in Fig. 1-10. The function contains l’s in the four corners that,
when taken as a group, give the term B�D�. This is possible because these four
squares are adjacent when the map is considered with top and bottom or left and
right edges touching. The two l’s on the left of the top row are combined with the
two l’s on the left of the bottom row to give the term B�C �. The remaining 1 in the
square of minterm 6 is combined with minterm 2 to give the term A�CD �. The sim-
plified function is

F � B�D� � B�C� � A�CD�

Product-of-Sums Simplification
The Boolean expressions derived from the maps in the preceding examples were
expressed in sum-of-products form. The product terms are AND terms and the
sum denotes the ORing of these terms. It is sometimes convenient to obtain the
algebraic expression for the function in a product-of-sums form. The sums are OR
terms and the product denotes the ANDing of these terms. With a minor modifi-
cation, a product-of-sums form can be obtained from a map.

The procedure for obtaining a product-of-sums expression follows from the
basic properties of Boolean algebra. The l’s in the map represent the minterms that
produce 1 for the function. The squares not marked by 1 represent the minterms
that produce 0 for the function. If we mark the empty squares with 0’s and combine
them into groups of adjacent squares, we obtain the complement of the function, F �.
Taking the complement of F � produces an expression for F in product-of-sums form.
The best way to show this is by example.

16 CHAPTER ONE Digital Logic Circuits

C

D

A

B

111

1

111

Figure 1-10 Map for F(A, B, C, D) � � (0, 1, 2, 6, 8, 9, 10).

Chapter01.qxd 2/2/2007 6:05 PM Page 16

EON
PreMedia

CONFIRMING PGS

We wish to simplify the following Boolean function in both sum-of-products
form and product-of-sums form:

F (A, B, C, D) � � (0, 1, 2, 5, 8, 9, 10)

The l’s marked in the map of Fig. 1-11 represent the minterms that produce a 1
for the function. The squares marked with 0’s represent the minterms not included
in F and therefore denote the complement of F. Combining the squares with l’s
gives the simplified function in sum-of-products form:

F � B�D� � B �C � � A�C �D

If the squares marked with 0’s are combined, as shown in the diagram, we obtain
the simplified complemented function:

F � � AB � CD � BD �

Taking the complement of F �, we obtain the simplified function in product-of-sums
form:

F � (A� � B �)(C � � D�)(B� � D)

The logic diagrams of the two simplified expressions are shown in Fig. 1-12. The
sum-of-products expression is implemented in Fig. l-12(a) with a group of AND
gates, one for each AND term. The outputs of the AND gates are connected to the
inputs of a single OR gate. The same function is implemented in Fig. l-12(b) in
product-of-sums form with a group of OR gates, one for each OR term. The outputs
of the OR gates are connected to the inputs of a single AND gate. In each case it is
assumed that the input variables are directly available in their complement, so
inverters are not included. The pattern established in Fig. 1-12 is the general form by
which any Boolean function is implemented when expressed in one of the standard

SECTION 1-4 Map Simplification 17

C

B

D

A

1 1 0 1

0

0

1011

0 0 0

010

Figure 1-11 Map for F(A, B, C, D) � �(0, 1, 2, 5, 8, 9, 10).

Chapter01.qxd 2/2/2007 6:05 PM Page 17

EON
PreMedia

CONFIRMING PGS

forms. AND gates are connected to a single OR gate when in sum-of-products form.
OR gates are connected to a single AND gate when in product-of-sums form.

A sum-of-products expression can be implemented with NAND gates as
shown in Fig. l-13(a). Note that the second NAND gate is drawn with the graphic
symbol of Fig. l-5(b). There are three lines in the diagram with small circles at both
ends. Two circles in the same line designate double complementation, and since
(x�)� � x, the two circles can be removed and the resulting diagram is equivalent to
the one shown in Fig. l-12(a). Similarly, a product-of-sums expression can be imple-
mented with NOR gates as shown in Fig. 1-13(b). The second NOR gate is drawn
with the graphic symbol of Fig. l-4(b). Again the two circles on both sides of each
line may be removed, and the diagram so obtained is equivalent to the one shown
in Fig. l-12(b).

Don’t-Care Conditions
The l’s and 0’s in the map represent the minterms that make the function equal to
1 or 0. There are occasions when it does not matter if the function produces 0 or
1 for a given minterm. Since the function may be either 0 or 1, we say that we
don’t care what the function output is to be for this minterm. Minterms that may
produce either 0 or 1 for the function are said to be don’t-care conditions and are
marked with an � in the map. These don’t-care conditions can be used to provide
further simplification of the algebraic expression.

18 CHAPTER ONE Digital Logic Circuits

don’t-care
conditions

NOR
implementation

B ' A '

B '
C '

D '

D

FF

(a) With NAND gates (b) With NOR gates

D '

C '

A '

D

Figure 1-13 Logic diagrams with NAND or NOR gates.

NAND
implementation

Figure 1-12 Logic diagrams with AND and OR gates.

B' A'

B'

C'

D'

D

F

D'

C'

A'

D

F

(a) Sum of products:
 F = B'D'�B'C'�A'C 'D

(b) Product of sums:
 F � (A'�B') (C' � D') (B'�D)

Chapter01.qxd 2/2/2007 6:05 PM Page 18

EON
PreMedia

CONFIRMING PGS

When choosing adjacent squares for the function in the map, the ��s may
be assumed to be either 0 or 1, whichever gives the simplest expression. In addi-
tion, an � need not be used at all if it does not contribute to the simplification of
the function. In each case, the choice depends only on the simplification that can
be achieved. As an example, consider the following Boolean function together
with the don’t-care minterms:

F (A, B, C) � � (0, 2, 6)

d (A, B, C) � � (1, 3, 5)

The minterms listed with F produce a 1 for the function. The don�t-care minterms
listed with d may produce either a 0 or a 1 for the function. The remaining
minterms, 4 and 7, produce a 0 for the function. The map is shown in Fig. 1-14.
The minterms of F are marked with 1’s, those of d are marked with �’s, and the
remaining squares are marked with 0’s. The l’s and �’s are combined in any con-
venient manner so as to enclose the maximum number of adjacent squares. It is
not necessary to include all or any of the �’s, but all the l’s must be included. By
including the don’t care minterms 1 and 3 with the l’s in the first row we obtain
the term A�. The remaining 1 for minterm 6 is combined with minterm 2 to obtain
the term BC �. The simplified expression is

F � A� � BC �

Note that don’t-care minterm 5 was not included because it does not contribute to
the simplification of the expression. Note also that if don’t-care minterms 1 and 3
were not included with the l’s, the simplified expression for F would have been

F � A�C� � BC �

This would require two AND gates and an OR gate, as compared to the expr-
ession obtained previously, which requires only one AND and one OR gate.

The function is determined completely once the �’s are assigned to the l’s
or 0’s in the map. Thus the expression

F � A� � BC �

represents the Boolean function

F (A, B, C) � � (0, 1, 2, 3, 6)

It consists of the original minterms 0, 2, and 6 and the don�t-care minterms 1
and 3. Minterm 5 is not included in the function. Since minterms 1, 3, and 5 were
specified as being don’t-care conditions, we have chosen minterms 1 and 3 to pro-
duce a 1 and minterm 5 to produce a 0. This was chosen because this assignment
produces the simplest Boolean expression.

SECTION 1-4 Map Simplification 19

Chapter01.qxd 2/2/2007 6:05 PM Page 19

EON
PreMedia

CONFIRMING PGS

1-5 Combinational Circuits
Digital logic circuits are basically categorized into two types:

1. Combinational circuits in which there are no feedback paths from outputs
to inputs and there is no memory.

2. Sequential circuits in which feedback paths exist from outputs to inputs,
and they have memory.

A combinational circuit is a connected arrangement of logic gates with a set of
inputs and outputs. At any given time, the binary values of the outputs are a func-
tion of the binary combination of the inputs. A block diagram of a combinational
circuit is shown in Fig. 1-15. The n binary input variables come from an external
source, the m binary output variables go to an external destination, and in between
there is an interconnection of logic gates. A combinational circuit transforms binary
information from the given input data to the required output data. Combinational
circuits are employed in digital computers for generating binary control decisions
and for providing digital components required for data processing.

A combinational circuit can be described by a truth table showing the binary
relationship between the n input variables and the m output variables. The truth table
lists the corresponding output binary values for each of the 2n input combinations. A
combinational circuit can also be specified with m Boolean functions, one for each
output variable. Each output function is expressed in terms of the n input variables.

The analysis of a combinational circuit starts with a given logic circuit dia-
gram and culminates with a set of Boolean functions or a truth table. If the digital

20 CHAPTER ONE Digital Logic Circuits

block diagram

Combinational
circuit

m output
variables

n input
variables

Figure 1-15 Block diagram of a combinational circuit.

analysis

C

�

� 0 1

� 11

0

B

A

Figure 1-14 Example of map with don’t-care conditions.

Chapter01.qxd 2/2/2007 6:05 PM Page 20

EON
PreMedia

CONFIRMING PGS

circuit is accompanied by a verbal explanation of its function, the Boolean functions
or the truth table is sufficient for verification. If the function of the circuit is under
investigation, it is necessary to interpret the operation of the circuit from the
derived Boolean functions or the truth table. The success of such investigation is
enhanced if one has experience and familiarity with digital circuits. The ability to
correlate a truth table or a set of Boolean functions with an information-processing
task is an art that one acquires with experience.

The design of combinational circuits starts from the verbal outline of the
problem and ends in a logic circuit diagram. The procedure involves the follow-
ing steps:

1. The problem is stated.
2. The input and output variables are assigned letter symbols.
3. The truth table that defines the relationship between inputs and outputs is

derived.
4. The simplified Boolean functions for each output are obtained.
5. The logic diagram is drawn.

To demonstrate the design of combinational circuits, we present two exam-
ples of simple arithmetic circuits. These circuits serve as basic building blocks for
the construction of more complicated arithmetic circuits.

Half-Adder
The most basic digital arithmetic circuit is the addition of two binary digits. A com-
binational circuit that performs the arithmetic addition of two bits is called a half-
adder. One that performs the addition of three bits (two significant bits and a
previous carry) is called a full-adder. The name of the former stems from the fact
that two half-adders are needed to implement a full-adder.

The input variables of a half-adder are called the augend and addend bits.
The output variables the sum and carry. It is necessary to specify two output vari-
ables because the sum of 1 � 1 is binary 10, which has two digits. We assign sym-
bols x and y to the two input variables, and S (for sum) and C (for carry) to the two
output variables. The truth table for the half-adder is shown in Fig. l-16(a).
The C output is 0 unless both inputs are 1. The S output represents the least sig-
nificant bit of the sum. The Boolean functions for the two outputs can be obtained
directly from the truth table:

S � x�y � xy� � x � y

C � xy

The logic diagram is shown in Fig. l-16(b). It consists of an exclusive-OR gate
and an AND gate. A half-adder logic module of an exclusive-OR gate and an
AND gate can be used to implement universal logic gates NAND and NOR.

SECTION 1-5 Combinational Circuits 21

design

Chapter01.qxd 2/2/2007 6:05 PM Page 21

EON
PreMedia

CONFIRMING PGS

Figure 1-16(c) shows the use of half-adder modules to construct NAND and
NOR gates.

Full-Adder
A full-adder is a combinational circuit that forms the arithmetic sum of three input
bits. It consists of three inputs and two outputs. Two of the input variables, denoted
by x and y, represent the two significant bits to be added. The third input, z , rep-
resents the carry from the previous lower significant position. Two outputs are nec-
essary because the arithmetic sum of three binary digits ranges in value from 0 to
3, and binary 2 or 3 needs two digits. The two outputs are designated by the sym-
bols S (for sum) and C (for carry). The binary variable S gives the value of the least
significant bit of the sum. The binary variable C gives the output carry. The truth
table of the full-adder is shown in Table 1-2. The eight rows under the input vari-
ables designate all possible combinations that the binary variables may have. The
value of the output variables are determined from the arithmetic sum of the input
bits. When all input bits are 0, the output is 0. The S output is equal to 1 when only
one input is equal to 1 or when all three inputs are equal to 1. The C output has a
carry of 1 if two or three inputs are equal to 1.

The maps of Fig. 1-17 are used to find algebraic expressions for the two out-
put variables. The l’s in the squares for the maps of S and C are determined

22 CHAPTER ONE Digital Logic Circuits

NAND

NOR

NAND using half-adders

NOR using half-adders

logic input

(x y)'

(x + y)'

x
y

x S

C = x'y'

S = x'

S = y'

C = xyy

x
y

Half
adder

Half
adder

x

'1'

'1'

'1'

Half
adder

y
Half
adder

Half
adder

1 + xy = (xy)'

(c)

C =

C

x
y Sx y C S

C

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

(a) Truth table (b) Logic diagram

Figure 1-16 Half-adder.

Chapter01.qxd 2/2/2007 6:05 PM Page 22

EON
PreMedia

CONFIRMING PGS

directly from the minterms in the truth table. The squares with l’s for the S output
do not combine in groups of adjacent squares. But since the output is 1 when an
odd number of inputs are 1, S is an odd function and represents the exclusive-OR
relation of the variables (see the discussion at the end of Sec. 1-2). The squares
with l’s for the C output may be combined in a variety of ways. One possible
expression for C is

C � xy � (x�y � xy�)z

Realizing that x �y � xy� � x � y and including the expression for output S, we
obtain the two Boolean expressions for the full-adder:

S � x � y � z

C � xy � (x � y)z

The logic diagram of the full-adder is drawn in Fig. 1-18. Note that the full adder cir-
cuit consists of two half-adders and an OR gate. When used in subsequent chapters,
the full-adder (FA) will be designated by a block diagram as shown in Fig. 1-18(b).

SECTION 1-5 Combinational Circuits 23

TABLE 1-2 Truth Table for Full-Adder

Inputs Outputs

x y z C S

0 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

S � x 'y 'z � x 'yz' � xy 'z' � xyz
 � x �y � z

1 1 1

11111x

y

C �xy � xz � yz
 �xy � (x 'y � xy ')z

y

zz

x

Figure 1-17 Maps for full-adder.

Chapter01.qxd 2/2/2007 6:05 PM Page 23

EON
PreMedia

CONFIRMING PGS

1-6 Flip-Flops
The digital circuits considered thus far have been combinational, where the outputs
at any given time are entirely dependent on the inputs that are present at that time.
Although every digital system is likely to have a combinational circuit, most systems
encountered in practice also include storage elements, which require that the system
be described in terms of sequential circuits. The most common type of sequential
circuit is the synchronous type. Synchronous sequential circuits employ signals that
affect the storage elements only at discrete instants of time. Synchronization is
achieved by a timing device called a clock pulse generator that produces a periodic
train of clock pulses. The clock pulses are distributed throughout the system in such a
way that storage elements are affected only with the arrival of the synchronization
pulse. Clocked synchronous sequential circuits are the type most frequently encoun-
tered in practice. They seldom manifest instability problems and their timing is eas-
ily broken down into independent discrete steps, each of which may be considered
separately.

The storage elements employed in clocked sequential circuits are called flip-
flops. A flip-flop is a binary cell capable of storing one bit of information. It has
two outputs, one for the normal value and one for the complement value of the
bit stored in it. A flip-flop maintains a binary state until directed by a clock pulse
to switch states. The difference among various types of flip-flops is in the number
of inputs they possess and in the manner in which the inputs affect the binary state.
The most common types of flip-flops are presented below.

SR Flip-Flop
The graphic symbol of the SR flip-flop is shown in Fig. l-19(a). It has three inputs,
labeled S (for set), R (for reset), and C (for clock). It has an output Q and sometimes
the flip-flop has a complemented output, which is indicated with a small circle at the
other output terminal. There is an arrowhead-shaped symbol in front of the letter C
to designate a dynamic input. The dynamic indicator symbol denotes the fact that the
flip-flop responds to a positive transition (from 0 to 1) of the input clock signal.

The operation of the SR flip-flop is as follows. If there is no signal at the clock
input C, the output of the circuit cannot change irrespective of the values at inputs

24 CHAPTER ONE Digital Logic Circuits

S Sx

y

z
C

FA

(a) Logic diagram (b) Block diagram

C

x
y

z

Figure 1-18 Full-adder circuit.

clocked sequential
circuit

Chapter01.qxd 2/2/2007 6:05 PM Page 24

EON
PreMedia

CONFIRMING PGS

S and R. Only when the clock signal changes from 0 to 1 can the output be affected
according to the values in inputs S and R. If S � 1 and R � 0 when C changes from
0 to 1, output Q is set to 1. If S � 0 and R � 1 when C changes from 0 to 1, output
Q is cleared to 0. If both S and R are 0 during the clock transition, the output does
not change. When both S and R are equal to 1, the output is unpredictable and may
go to either 0 or 1, depending on internal timing delays that occur within the circuit.

The characteristic table shown in Fig. l-19(b) summarizes the operation of
the SR flip-flop in tabular form. The S and R columns give the binary values of the
two inputs. Q (t) is the binary state of the Q output at a given time (referred to as
present state). Q (t � 1) is the binary state of the Q output after the occurrence of a
clock transition (referred to as next state). If S � R � 0, a clock transition produces
no change of state [i.e., Q (t � 1) � Q (t)]. If S � 0 and R � 1, the flip-flop goes to
the 0 (clear) state. If S � 1 and R � 0, the flip-flop goes to the 1 (set) state. The SR
flip-flop should not be pulsed when S � R � 1 since it produces an indeterminate
next state. This indeterminate condition makes the SR flip-flop difficult to manage
and therefore it is seldom used in practice.

D Flip-Flop
The D (data) flip-flop is a slight modification of the SR flip-flop. An SR flip-flop is
converted to a D flip-flop by inserting an inverter between S and R and assigning
the symbol D to the single input. The D input is sampled during the occurrence of
a clock transition from 0 to 1. If D � 1, the output of the flip-flop goes to the
1 state, but if D � 0, the output of the flip-flop goes to the 0 state.

The graphic symbol and characteristic table of the D flip-flop are shown in
Fig. 1-20. From the characteristic table we note that the next state Q (t � 1) is

SECTION 1-6 Flip-Flops 25

S
S R Q (t + 1)

Q

C

R

0 0 Q (t) No change
0 1 0 Clear to 0
1 0 1 Set to 1
1 1 ? Indeterminate

(a) Graphic symbol (b) Characteristic table

Figure 1-19 SR flip-flop.

D Q

C

D Q (t + 1)

0 0 Clear to 0
1 1 Set to 1

(a) Graphic symbol (b) Characteristic table

Figure 1-20 D flip-flop

Chapter01.qxd 2/2/2007 6:05 PM Page 25

EON
PreMedia

CONFIRMING PGS

determined from the D input. The relationship can be expressed by a charac-
teristic equation:

Q (t � 1) � D

This means that the Q output of the flip-flop receives its value from the D input
every time that the clock signal goes through a transition from 0 to 1.

Note that no input condition exists that will leave the state of the D flip-flop
unchanged. Although a D flip-flop has the advantage of having only one input
(excluding C), it has the disadvantage that its characteristic table does not have a
“no change” condition Q (t � 1) � Q (t). The “no change” condition can be accom-
plished either by disabling the clock signal or by feeding the output back into the
input, so that clock pulses keep the state of the flip-flop unchanged.

JK Flip-Flop
A JK flip-flop is a refinement of the SR flip-flop in that the indeterminate condi-
tion of the SR type is defined in the JK type. Inputs J and K behave like inputs S
and R to set and clear the flip-flop, respectively. When inputs J and K are both
equal to 1, a clock transition switches the outputs of the flip-flop to their comple-
ment state.

The graphic symbol and characteristic table of the JK flip-flop are shown in
Fig. 1-21. The J input is equivalent to the S (set) input of the SR flip-flop, and the
K input is equivalent to the R (clear) input. Instead of the indeterminate condition,
the JK flip-flop has a complement condition Q (t � 1) � Q�(t) when both J and K
are equal to 1.

T Flip-Flop
Another type of flip-flop found in textbooks is the T (toggle) flip-flop. This flip-flop,
shown in Fig. 1-22, is obtained from a JK type when inputs J and K are connected
to provide a single input designated by T. The T flip-flop therefore has only two
conditions. When T � 0 (J � K � 0) a clock transition does not change the state of

26 CHAPTER ONE Digital Logic Circuits

J
J K Q (t � 1)

Q

C

K

0 0 Q (t) No change
0 1 0 Clear to 0
1 0 1 Set to 1
1 1 Q' (t) Complement

(a) Graphic symbol (b) Characteristic table

Figure 1-21 JK flip-flop

Chapter01.qxd 2/2/2007 6:05 PM Page 26

EON
PreMedia

CONFIRMING PGS

the flip-flop. When T � l (J � K � l) a clock transition complements the state of
the flip-flop. These conditions can be expressed by a characteristic equation:

Q (t � 1) � Q (t) � T

Edge-Triggered Flip-Flops
The most common type of flip-flop used to synchronize the state change during a
clock pulse transition is the edge-triggered flip-flop. In this type of flip-flop, output
transitions occur at a specific level of the clock pulse. When the pulse input level
exceeds this threshold level, the inputs are locked out so that the flip-flop is unre-
sponsive to further changes in inputs until the clock pulse returns to 0 and another
pulse occurs. Some edge-triggered flip-flops cause a transition on the rising edge
of the clock signal (positive-edge transition), and others cause a transition on the
falling edge (negative-edge transition).

Figure l-23(a) shows the clock pulse signal in a positive-edge-triggered D flip-
flop. The value in the D input is transferred to the Q output when the clock makes
a positive transition. The output cannot change when the clock is in the 1 level, in
the 0 level, or in a transition from the 1 level to the 0 level. The effective positive
clock transition includes a minimum time called the setup time in which the D
input must remain at a constant value before the transition, and a definite time
called the hold time in which the D input must not change after the positive transi-
tion. The effective positive transition is usually a very small fraction of the total
period of the clock pulse.

Figure l-23(b) shows the corresponding graphic symbol and timing dia-
gram for a negative-edge-triggered D flip-flop. The graphic symbol includes a
negation small circle in front of the dynamic indicator at the C input. This
denotes a negative-edge-triggered behavior. In this case the flip-flop responds to
a transition from the 1 level to the 0 level of the clock signal.

Another type of flip-flop used in some systems is the master-slave flip-flop.
This type of circuit consists of two flip-flops. The first is the master, which
responds to the positive level of the clock, and the second is the slave, which
responds to the negative level of the clock. The result is that the output changes

SECTION 1-6 Flip-Flops 27

Figure 1-22 T flip-flop

T Q

C

T Q (t + 1)

0 Q (t) No change
1 Q' (t) Complement

(a) Graphic symbol (b) Characteristic table

clock pulses

master-slave
flip-flop

Chapter01.qxd 2/2/2007 6:05 PM Page 27

EON
PreMedia

CONFIRMING PGS

during the l-to-0 transition of the clock signal. The trend is away from the use of
master-slave flip-flops and toward edge-triggered flip-flops.

Flip-flops available in integrated circuit packages will sometimes provide
special input terminals for setting or clearing the flip-flop asynchronously. These
inputs are usually called “preset” and “clear.” They affect the flip-flop on a nega-
tive level of the input signal without the need of a clock pulse. These inputs are
useful for bringing the flip-flops to an initial state prior to its clocked operation.

Excitation Tables
The characteristic tables of flip-flops specify the next state when the inputs and the
present state are known. During the design of sequential circuits we usually know
the required transition from present state to next state and wish to find the flip-flop
input conditions that will cause the required transition. For this reason we need a
table that lists the required input combinations for a given change of state. Such a
table is called a flip-flop excitation table.

Table 1-3 lists the excitation tables for the four types of flip-flops. Each table
consists of two columns, Q (t) and Q (t � 1), and a column for each input to show
how the required transition is achieved. There are four possible transitions from
present state Q (t) to next state Q (t � 1). The required input conditions for each of
these transitions are derived from the information available in the characteristic
tables. The symbol � in the tables represents a don’t-care condition; that is, it does
not matter whether the input to the flip-flop is 0 or 1.

28 CHAPTER ONE Digital Logic Circuits

Figure 1-23 Edge-triggered flip-flop.

D Q

C

D Q

C

Clock

Output
cannot
change

Positive
clock

transition
(a) Positive-edge-triggered D flip-flop

Time

Clock

Output
cannot
change

Negative
clock

transition

(b) Negative-edge-triggered D flip-flop

Time

Chapter01.qxd 2/2/2007 6:05 PM Page 28

EON
PreMedia

CONFIRMING PGS

The reason for the don’t-care conditions in the excitation tables is that there
are two ways of achieving the required transition. For example, in a JK flip-flop, a
transition from present state of 0 to a next state of 0 can be achieved by having
inputs J and K equal to 0 (to obtain no change) or by letting J � 0 and K � 1 to
clear the flip-flop (although it is already cleared). In both cases J must be 0, but K
is 0 in the first case and 1 in the second. Since the required transition will occur in
either case, we mark the K input with a don’t-care � and let the designer choose
either 0 or 1 for the K input, whichever is more convenient.

1-7 Sequential Circuits
A sequential circuit is an interconnection of flip-flops and gates. The gates by
themselves constitute a combinational circuit, but when included with the flip-
flops, the overall circuit is classified as a sequential circuit. The block diagram of
a clocked sequential circuit is shown in Fig. 1-24. It consists of a combinational

SECTION 1-7 Sequential Circuits 29

TABLE 1-3 Excitation Table for Four Flip-Flops

SR flip-flop D flip-flop

Q (t) Q (t � 1) S R Q (t) Q (t � 1) D

0 0 0 � 0 0 0
0 1 1 0 0 1 1
1 0 0 1 1 0 0
1 1 � 0 1 1 1

JK flip-flop T flip-flop

Q (t) Q (t � 1) J K Q (t) Q (t � 1) T

0 0 0 � 0 0 0
0 1 1 � 0 1 1
1 0 � 1 1 0 1
1 1 � 0 1 1 0

Figure 1-24 Block diagram of a clocked synchronous sequential circuit.

Input

Clock

Outputs
Flip-flops

Combinational
circuit

Chapter01.qxd 2/2/2007 6:05 PM Page 29

EON
PreMedia

CONFIRMING PGS

circuit and a number of clocked flip-flops. In general, any number or type of flip-
flops may be included. As shown in the diagram, the combinational circuit block
receives binary signals from external inputs and from the outputs of flip-flops. The
outputs of the combinational circuit go to external outputs and to inputs of flip-
flops. The gates in the combinational circuit determine the binary value to be
stored in the flip-flops after each clock transition. The outputs of flip-flops, in turn,
are applied to the combinational circuit inputs and determine the circuit’s behav-
ior. This process demonstrates that the external outputs of a sequential circuit are
functions of both external inputs and the present state of the flip-flops. Moreover,
the next state of flip-flops is also a function of their present state and external
inputs. Thus a sequential circuit is specified by a time sequence of external inputs,
external outputs, and internal flip-flop binary states.

Flip-Flop Input Equations
An example of a sequential circuit is shown in Fig. 1-25. It has one input variable
x, one output variable y, and two clocked D flip-flops. The AND gates, OR gates,
and inverter form the combinational logic part of the circuit. The interconnections

30 CHAPTER ONE Digital Logic Circuits

D Q

C

D A

B

B'Clock

y

x

A'

Q

C

Figure 1-25 Example of a sequential circuit

Chapter01.qxd 2/2/2007 6:05 PM Page 30

EON
PreMedia

CONFIRMING PGS

among the gates in the combinational circuit can be specified by a set of Boolean
expressions. The part of the combinational circuit that generates the inputs to flip-
flops are described by a set of Boolean expressions called flip-flop input equations.
We adopt the convention of using the flip-flop input symbol to denote the input
equation variable name and a subscript to designate the symbol chosen for the
output of the flip-flop. Thus, in Fig. 1-25, we have two input equations, designated
DA and DB. The first letter in each symbol denotes the D input of a D flip-flop. The
subscript letter is the symbol name of the flip-flop. The input equations are
Boolean functions for flip-flop input variables and can be derived by inspection of
the circuit. Since the output of the OR gate is connected to the D input of flip-flop
A, we write the first input equation as

DA � Ax � Bx

where A and B are the outputs of the two flip-flops and x is the external input. The
second input equation is derived from the single AND gate whose output is con-
nected to the D input of flip-flop B:

DB � A�x

The sequential circuit also has an external output, which is a function of the
input variable and the state of the flip-flops. This output can be specified alge-
braically by the expression

y � Ax� � Bx�

From this example we note that a flip-flop input equation is a Boolean
expression for a combinational circuit. The subscripted variable is a binary vari-
able name for the output of a combinational circuit. This output is always con-
nected to a flip-flop input.

State Table
The behavior of a sequential circuit is determined from the inputs, the outputs,
and the state of its flip-flops. Both the outputs and the next state are a function of
the inputs and the present state. A sequential circuit is specified by a state table
that relates outputs and next states as a function of inputs and present states. In
clocked sequential circuits, the transition from present state to next state is acti-
vated by the presence of a clock signal.

The state table for the circuit of Fig. 1-25 is shown in Table 1-4. The table
consists of four sections, labeled present state, input, next state, and output. The
present-state section shows the states of flip-flops A and B at any given time t. The
input section gives a value of x for each possible present state. The next-state sec-
tion shows the states of the flip-flops one clock period later at time t � 1. The out-
put section gives the value of y for each present state and input condition.

SECTION 1-7 Sequential Circuits 31

next state

present state

input equation

Chapter01.qxd 2/2/2007 6:05 PM Page 31

EON
PreMedia

CONFIRMING PGS

The derivation of a state table consists of first listing all possible binary com-
binations of present state and inputs. In this case we have eight binary combina-
tions from 000 to 111. The next-state values are then determined from the logic
diagram or from the input equations. The input equation for flip-flop A is

DA � Ax � Bx

The next-state value of a each flip-flop is equal to its D input value in the present
state. The transition from present state to next state occurs after application of a
clock signal. Therefore, the next state of A is equal to 1 when the present state and
input values satisfy the conditions Ax � 1 or Bx � 1, which makes DA equal 1. This
is shown in the state table with three l’s under the column for next state of A.
Similarly, the input equation for flip-flop B is

DB � A�x

The next state of B in the state table is equal to 1 when the present state of A
is 0 and input x is equal to 1. The output column is derived from the output
equation

y � Ax� � Bx�

The state table of any sequential circuit is obtained by the procedure used in this
example. In general, a sequential circuit with m flip-flops, n input variables, and p
output variables will contain m columns for present state, n columns for inputs, m
columns for next state, and p columns for outputs. The present state and input
columns are combined and under them we list the 2m�n binary combinations from
0 through 2m�n � 1. The next-state and output columns are functions of the pres-
ent state and input values and are derived directly from the circuit or the Boolean
equations that describe the circuit.

32 CHAPTER ONE Digital Logic Circuits

state table

TABLE 1-4 State Table for Circuit of Fig. 1-25.

Present Next
state Input state Output

A B x A B y

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 1 1 0 0
1 1 0 0 0 1
1 1 1 1 0 0

Chapter01.qxd 2/2/2007 6:05 PM Page 32

EON
PreMedia

CONFIRMING PGS

State Diagram
The information available in a state table can be represented graphically in a state
diagram state diagram. In this type of diagram, a state is represented by a circle,
and the transition between states is indicated by directed lines connecting the cir-
cles. The state diagram of the sequential circuit of Fig. 1-25 is shown in Fig. 1-26.
The state diagram provides the same information as the state table and is obtained
directly from Table 1-4. The binary number inside each circle identifies the state
of the flip-flops. The directed lines are labeled with two binary numbers separated
by a slash. The input value during the present state is labeled first and the num-
ber after the slash gives the output during the present state. For example, the
directed line from state 00 to 01 is labeled 1/0, meaning that when the sequential
circuit is in the present state 00 and the input is 1, the output is 0. After a clock
transition, the circuit goes to the next state 01. The same clock transition may
change the input value. If the input changes to 0, the output becomes 1, but if the
input remains at 1, the output stays at 0. This information is obtained from the
state diagram along the two directed lines emanating from the circle representing
state 01. A directed line connecting a circle with itself indicates that no change of
state occurs.

There is no difference between a state table and a state diagram except in
the manner of representation. The state table is easier to derive from a given logic
diagram and the state diagram follows directly from the state table. The state dia-
gram gives a pictorial view of state transitions and is the form suitable for human
interpretation of the circuit operation. For example, the state diagram of Fig. 1-26
clearly shows that starting from state 00, the output is 0 as long as the input stays
at 1. The first 0 input after a string of l’s gives an output of 1 and transfers the
circuit back to the initial state 00.

Design Example
The procedure for designing sequential circuits will be demonstrated by a specific
example. The design procedure consists of first translating the circuit specifications

SECTION 1-7 Sequential Circuits 33

state diagram

01

0/0 1/0

0/1

0/1
0/1

1/0

1/01/0

11

1000

Figure 1-26 State diagrams of sequential circuit.

Chapter01.qxd 2/2/2007 6:05 PM Page 33

EON
PreMedia

CONFIRMING PGS

into a state diagram. The state diagram is then converted into a state table. From
the state table we obtain the information for obtaining the logic circuit diagram.

We wish to design a clocked sequential circuit that goes through a sequence
of repeated binary states 00, 01, 10, and 11 when an external input x is equal to 1.
The state of the circuit remains unchanged when x � 0. This type of circuit is
called a 2-bit binary counter because the state sequence is identical to the count
sequence of two binary digits. Input x is the control variable that specifies when
the count should proceed.

The binary counter needs two flip-flops to represent the two bits. The state
diagram for the sequential circuit is shown in Fig. 1-27. The diagram is drawn to
show that the states of the circuit follow the binary count as long as x � 1. The
state following 11 is 00, which causes the count to be repeated. If x � 0, the state
of the circuit remains unchanged. This sequential circuit has no external outputs,
and therefore only the input value is labeled in the diagram. The state of the flip-
flops is considered as the outputs of the counter.

We have already assigned the symbol x to the input variable. We now assign
the symbols A and B to the two flip-flop outputs. The next state of A and B, as a
function of the present state and input x, can be transferred from the state diagram
into a state table. The first five columns of Table 1-5 constitute the state table. The
entries for this table are obtained directly from the state diagram.

The excitation table of a sequential circuit is an extension of the state table.
This extension consists of a list of flip-flop input excitations that will cause the
required state transitions. The flip-flop input conditions are a function of the type
of flip-flop used. If we employ JK flip-flops, we need columns for the J and K
inputs of each flip-flop. We denote the inputs of flip-flop A by JA and KA, and those
of flip-flop B by JB and KB.

The excitation table for the JK flip-flop specified in Table 1-3 is now used
to derive the excitation table of the sequential circuit. For example, in the first

34 CHAPTER ONE Digital Logic Circuits

excitation table

10

11

00

01
x = 1

x = 1

x = 1

x = 1

x = 0

x = 0

x = 0

x = 0

Figure 1-27 State diagram of binary counter.

binary counter

Chapter01.qxd 2/2/2007 6:05 PM Page 34

EON
PreMedia

CONFIRMING PGS

row of Table 1-5, we have a transition for flip-flop A from 0 in the present state
to 0 in the next state. In Table 1-3 we find that a transition of states from Q (t)
� 0 to Q (t � 1) � 0 in a JK flip-flop requires that input J � 0 and input K � �.
So 0 and � are copied in the first row under JA and KA, respectively. Since the
first row also shows a transition for flip-flop B from 0 in the present state to 0
in the next state, 0 and � are copied in the first row under JB and KB . The sec-
ond row of Table 1-5 shows a transition for flip-flop B from 0 in the present state
to 1 in the next state. From Table 1-3 we find that a transition from Q (t) � 0 to
Q (t � 1) � 1 requires that input J � 1 and input K � �. So 1 and � are copied
in the second row under JB and KB, respectively. This process is continued for
each row of the table and for each flip-flop, with the input conditions as speci-
fied in Table 1-3 being copied into the proper row of the particular flip-flop
being considered.

Let us now consider the information available in an excitation table such as
Table 1-5. We know that a sequential circuit consists of a number of flip-flops and
a combinational circuit. From the block diagram of Fig. 1-24, we note that the
outputs of the combinational circuit must go to the four flip-flop inputs JA, KA, JB ,
and KB. The inputs to the combinational circuit are the external input x and the
present-state values of flip-flops A and B. Moreover, the Boolean functions that
specify a combinational circuit are derived from a truth table that shows the
input-output relationship of the circuit. The entries that list the combinational
circuit inputs are specified under the “present state” and “input” columns in the
excitation table. The combinational circuit outputs are specified under the “flip-
flop inputs” columns. Thus an excitation table transforms a state diagram to a
truth table needed for the design of the combinational circuit part of the sequen-
tial circuit.

The simplified Boolean functions for the combinational circuit can now be
derived. The inputs are the variables A, B, and x. The outputs are the variables
JA, KA, JB, and KB. The information from the excitation table is transferred into

SECTION 1-7 Sequential Circuits 35

TABLE 1-5 Excitation Table for Binary Counter

Present Next
state Input state Flip-flop inputs

A B x A B JA KA JB KB

0 0 0 0 0 0 � 0 �
0 0 1 0 1 0 � 1 �
0 1 0 0 1 0 � � 0
0 1 1 1 0 1 � � 1
1 0 0 1 0 � 0 0 �
1 0 1 1 1 � 0 1 �
1 1 0 1 1 � 0 � 0
1 1 1 0 0 � 1 � 1

Chapter01.qxd 2/2/2007 6:05 PM Page 35

EON
PreMedia

CONFIRMING PGS

36 CHAPTER ONE Digital Logic Circuits

the maps of Fig. 1-28, where the four simplified flip-flop input equations are
derived:

JA � Bx KA � Bx

JB � x KB � x

The logic diagram is drawn in Fig. 1-29 and consists of two JK flip-flops and an
AND gate. Note that inputs J and K determine the next state of the counter when
a clock signal occurs. If both J and K are equal to 0, a clock signal will have no
effect; that is, the state of the flip-flops will not change. Thus when x � 0, all four
inputs of the flip-flops are equal to 0 and the state of the flip-flops remains
unchanged even though clock pulses are applied continuously.

Design Procedure
The design of sequential circuits follows the outline described in the preceding
example. The behavior of the circuit is first formulated in a state diagram. The
number of flip-flops needed for the circuit is determined from the number of bits
listed within the circles of the state diagram. The number of inputs for the circuit
is specified along the directed lines between the circles. We then assign letters to
designate all flip-flops and input and output variables and proceed to obtain the
state table.

For m flip-flops and n inputs, the state table will consist of m columns for the
present state, n columns for the inputs, and m columns for the next state. The

1

��� �

� � � �

1

BB

A A

x x

JA = Bx

�1 �

�1 �

B

A

x

1��

1��

B

A

x

JB = x KB = x

KA = Bx

Figure 1-28 Maps for combinational circuit of counter.

Chapter01.qxd 2/2/2007 6:05 PM Page 36

EON
PreMedia

CONFIRMING PGS

number of rows in the table will be up to 2m�n , one row for each binary combi-
nation of present state and inputs. For each row we list the next state as specified
by the state diagram. Next, the flip-flop type to be used in the circuit is chosen.
The state table is then extended into an excitation table by including columns for
each input of each flip-flop. The excitation table for the type of flip-flop in use can
be found in Table 1-3. From the information available in this table and by inspect-
ing present state-to-next state transitions in the state table, we obtain the informa-
tion for the flop-flop input conditions in the excitation table.

The truth table for the combinational circuit part of the sequential circuit is
available in the excitation table. The present-state and input columns constitute
the inputs in the truth table. The flip-flop input conditions constitute the outputs
in the truth table. By means of map simplification we obtain a set of flip-flop input
equations for the combinational circuit. Each flip-flop input equation specifies a
logic diagram whose output must be connected to one of the flip-flop inputs. The
combinational circuit so obtained, together with the flip-flops, constitutes the
sequential circuit.

The outputs of flip-flops are often considered to be part of the outputs of the
sequential circuit. However, the combinational circuit may also contain external
outputs. In such a case the Boolean functions for the external outputs are derived
from the state table by combinational circuit design techniques.

A set of flip-flop input equations specifies a sequential circuit in algebraic form.
The procedure for obtaining the logic diagram from a set of flip-flop input equations
is a straightforward process. First draw the flip-flops and label all their inputs and
outputs. Then draw the combinational circuit from the Boolean expressions given
by the flip-flop input equations. Finally, connect outputs of flip-flops to inputs in the
combinational circuit and outputs of the combinational circuit to flip-flop inputs.

SECTION 1-7 Sequential Circuits 37

Jx Q

C

K

J Q

C

K

A

B

Clock

Figure 1-29 Logic diagram of a 2-bit binary counter.

Chapter01.qxd 2/2/2007 6:05 PM Page 37

EON
PreMedia

CONFIRMING PGS

38 CHAPTER ONE Digital Logic Circuits

PROBLEMS

1-1. Determine by means of a truth table the validity of DeMorgan’s theorem for
three variables: (ABC)�� A� � B � � C�.

1-2. List the truth table of a three-variable exclusive-OR (odd) function: x � 	 �
 � C .

1-3. Simplify the following expressions using Boolean algebra.
a. A � AB
b. AB � AB�
c. A�BC � AC
d. A�B � ABC� � ABC

1-4. Simplify the following expressions using Boolean algebra.
a. AB � A(CD � CD�)
b. (BC� � A�D) (AB� � CD�)

1-5. Using DeMorgan’s theorem, show that:
a. (A � B)�(A� � B�)� � 0
b. A � A�B � A�B� � 1

1-6. Given the Boolean expression F � x�y � xyz�:
a. Derive an algebraic expression for the complement F�.
b. Show that F � F� � 0.
c. Show that F � F� � 1.

1-7. Given the Boolean function

F � xy�z � x�y�z � xyz

a. List the truth table of the function.
b. Draw the logic diagram using the original Boolean expression.
c. Simplify the algebraic expression using Boolean algebra.
d. List the truth table of the function from the simplified expression and show

that it is the same as the truth table in part (a).
e. Draw the logic diagram from the simplified expression and compare the total

number of gates with the diagram of part (b).

1-8. Simplify the following Boolean functions using three-variable maps.

a. F (x, y, z) � �(0, 1, 5, 7)

b. F (x, y, z) � �(1, 2, 3, 6, 7)

c. F (x, y, z) � �(3, 5, 6, 7)

d. F (A, B, C) � �(0, 2, 3, 4, 6)

1-9. Simplify the following Boolean functions using four-variable maps.

a. F (A, B, C, D) � �(4, 6, 7, 15)

b. F (A, B, C, D) � �(3, 7, 11, 13, 14, 15)

c. F (A, B, C, D) � �(0, 1, 2, 4, 5, 7, 11, 15)

d. F (A, B, C, D) � �(0, 2, 4, 5, 6, 7, 8, 10, 13, 15)

1-10. Simplify the following expressions in (1) sum-of-products form and (2) product-of-
sums form.

Chapter01.qxd 2/2/2007 6:05 PM Page 38

EON
PreMedia

CONFIRMING PGS

a. x�z � � y�z� � yz� � xy
b. AC � B�D � A�CD � ABCD

1-11. Simplify the following Boolean function in sum-of-products form by means of a
four-variable map. Draw the logic diagram with (a) AND-OR gates; (b) NAND
gates.

F (A, B, C, D) = � (0, 2, 8, 9, 10, 11, 14, 15)

1-12. Simplify the following Boolean function in product-of-sums form by means of a
four-variable map. Draw the logic diagram with (a) OR-AND gates; (b) NOR gates.

F (w, x, y, z) = � (2, 3, 4, 5, 6, 7, 11, 14, 15)

1-13. Simplify the Boolean function F together with the don’t-care conditions d in (1)
sum-of-products form and (2) product-of-sums form.

F (w, x, y, z) = � (0, 1, 2, 3, 7, 8, 10)

d (w, x, y, z) = � (5, 6, 11, 15)

1-14. Using Table 1-2, derive the Boolean expression for the S (sum) output of the full-
adder in sum-of-products form. Then by algebraic manipulation show that S can
be expressed as the exclusive-OR of the three input variables.

S = x � y � z

1-15. A majority function is generated in a combinational circuit when the output is
equal to 1 if the input variables have more l’s than 0’s. The output is 0 otherwise.
Design a three-input majority function.

1-16. Design a combinational circuit with three inputs x, y, z and three outputs A, B,
C. When the binary input is 0, 1, 2, or 3, the binary output is one greater than
the input. When the binary input is 4, 5, 6, or 7, the binary output is one less
than the input.

1-17. Show that a JK flip-flop can be converted to a D flip-flop with an inverter
between the J and K inputs.

1-18. Using the information from the characteristic table of the JK flip-flop listed in
Fig. l-21(b), derive the excitation table for the JK flip-flop and compare your
answer with Table 1-3.

1-19. A sequential circuit has two D flip-flops A and B, two inputs x and y, and one
output z. The flip-flop input equations and the circuit output are as follows:

DA = x�y � xA

DB = x�B � xA

z = B

a. Draw the logic diagram of the circuit.
b. Tabulate the state table.

SECTION 1-7 Sequential Circuits 39

Chapter01.qxd 2/2/2007 6:05 PM Page 39

EON
PreMedia

CONFIRMING PGS

1. Hill, F. J., and G. R. Peterson, Introduction to Switching Theory and Logical Design, 3rd ed.
New York: John Wiley, 1981.

2. Mano, M. M., Digital Design, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1991.

3. Roth, C. H., Fundamentals of Logic Design, 3rd ed. St. Paul, MN: West Publishing, 1985.

4. Sandige, R. S., Modern Digital Design. New York: McGraw-Hill, 1990.

5. Shiva, S. G., Introduction to Logic Design. Glenview, IL: Scott, Foresman, 1988.

6. Wakerly, J. F., Digital Design Principles and Practices. Englewood Cliffs, NJ: Prentice Hall,
1990.

7. Ward, S. A., and R. H. Halstead, Jr., Computation Structures. Cambridge, MA: MIT
Press, 1990.

40 CHAPTER ONE Digital Logic Circuits

REFERENCES

1-20. Design a 2-bit count-down counter. This is a sequential circuit with two flip-flops
and one input x. When x = 0, the state of the flip-flops does not change. When
x = 1, the state sequence is 11, 10, 01, 00, 11, and repeat.

1-21. Design a sequential circuit with two JK flip-flops A and B and two inputs E and
x. If E = 0, the circuit remains in the same state regardless of the value of x.
When E = 1 and x = 1, the circuit goes through the state transitions from 00 to
01 to 10 to 11 back to 00, and repeat. When E = 1 and x = 0, the circuit goes
through the state transitions from 00 to 11 to 10 to 01 back to 00, and repeat.

Chapter01.qxd 2/2/2007 6:05 PM Page 40

EON
PreMedia

CONFIRMING PGS

IN THIS CHAPTER

2-1 Integrated Circuits
2-2 Decoders
2-3 Multiplexers
2-4 Registers
2-5 Shift Registers
2-6 Binary Counters
2-7 Memory Unit

2-1 Integrated Circuits
Digital circuits are constructed with integrated circuits. An integrated circuit (IC)
is a small silicon semiconductor crystal, called a chip, containing the electronic
components for the digital gates. The various gates are interconnected inside the
chip to form the required circuit. The chip is mounted in a ceramic or plastic con-
tainer, and connections are welded by thin gold wires to external pins to form the
integrated circuit. The number of pins may range from 14 in a small IC package
to 100 or more in a larger package. Each IC has a numeric designation printed on
the surface of the package for identification. Each vendor publishes a data book or
catalog that contains the exact description and all the necessary information about
the ICs that it manufactures.

As the technology of ICs has improved, the number of gates that can be put
in a single chip has increased considerably. The differentiation between those
chips that have a few internal gates and those having hundreds or thousands of
gates is made by a customary reference to a package as being either a small-,
medium-, or large-scale integration device.

Small-scale integration (SSI) devices contain several independent gates in a
single package. The inputs and outputs of the gates are connected directly to the
pins in the package. The number of gates is usually less than 10 and is limited by
the number of pins available in the IC.

41

C H A P T E R T W O

Digital Components
ECL

MOS

CMOS

decoder

Chapter02.qxd 2/2/2007 6:10 PM Page 41

EON
PreMedia

CONFIRMING PGS

Medium-scale integration (MSI) devices have a complexity of approximately
10 to 200 gates in a single package. They usually perform specific elementary dig-
ital functions such as decoders, adders, and registers.

Large-scale integration (LSI) devices contain between 200 and a few thousand
gates in a single package. They include digital systems, such as processors, mem-
ory chips, and programmable modules.

Very-large-scale integration (VLSI) devices contains thousands of gates within
a single package. Examples are large memory arrays and complex microcomputer
chips. Because of their small size and low cost, VLSI devices have revolutionized
the computer system design technology, giving designers the capability to create
structures that previously were not economical.

Digital integrated circuits are classified not only by their logic operation but
also by the specific circuit technology to which they belong. The circuit technol-
ogy is referred to as a digital logic family. Each logic family has its own basic elec-
tronic circuit upon which more complex digital circuits and functions are
developed. The basic circuit in each technology is either a NAND, a NOR, or an
inverter gate. The electronic components that are employed in the construction of
the basic circuits are usually used for the name of the technology. many different
logic families of integrated circuits have been introduced commercially. The fol-
lowing are the most popular.

TTL Transistor-transistor logic
ECL Emitter-coupled logic
MOS Metal-oxide semiconductor
CMOS Complementary metal-oxide semiconductor

TTL is a widespread logic family that has been in operation for many years
and is considered as standard. ECL has an advantage in systems requiring high-
speed operation. MOS is suitable for circuits that need high component density,
and CMOS is preferable in systems requiring low power consumption.

The transistor-transistor logic family was an evolution of a previous technol-
ogy that used diodes and transistors for the basic NAND gate. This technology
was called DTL, for “diode-transistor logic.” Later the diodes were replaced by
transistors to improve the circuit operation and the name of the logic family was
changed to “transistor-transistor logic.” This is the reason for mentioning the word
“transistor” twice. There are several variations of the TTL family besides the stan-
dard TTL, such as high-speed TTL, low-power TTL, Schottky TTL, low-power
Schottky TTL, and advanced Schottky TTL. The power supply voltage for TTL
circuits is 5 volts, and the two logic levels are approximately 0 and 3.5 volts.

The emitter-coupled logic (ECL) family provides the highest-speed digital
circuits in integrated form. ECL is used in systems such as supercomputers and
signal processors where high speed is essential. The transistors in ECL gates oper-
ate in a nonsaturated state, a condition that allows the achievement of propagation
delays of 1 to 2 nanoseconds.

42 CHAPTER TWO Digital Components

TTL

MSI

LSI

VLSI

Chapter02.qxd 2/2/2007 6:10 PM Page 42

EON
PreMedia

CONFIRMING PGS

SECTION 2-2 Decoders 43

Figure 2-1 Comparison of the basic logic families.

Power Polar High Logic Low Logic
Speed Dissipation Supply Level Level

Family (n sec) (m watts) Faxout (V) (V) (V)

TTL 10 10 10 �5 �3 0.2
ECL 2 40 high �5.2 �0.9 �1.75
CMOS 25 low high 3–15 Vcc 0

The metal-oxide semiconductor (MOS) is a unipolar transistor that
depends on the flow of only one type of carrier, which may be electrons (n-chan-
nel) or holes (p-channel). This is in contrast to the bipolar transistor used in TTL
and ECL gates, where both carriers exist during normal operation. A p-channel
MOS is referred to as PMOS and an n-channel as NMOS. NMOS is the one
that is commonly used in circuits with only one type of MOS transistor. The
complementary MOS (CMOS) technology uses PMOS and NMOS transistors
connected in a complementary fashion in all circuits. The most important
advantages of CMOS over bipolar are the high packing density of circuits, a
simpler processing technique during fabrication, and a more economical opera-
tion because of low power consumption. Figure 2-1 is a comparison of the basic
logic families.

Because of their many advantages, integrated circuits are used exclusively to
provide various digital components needed in the design of computer systems. To
understand the organization and design of digital computers it is very important
to be familiar with the various components encountered in integrated circuits. For
this reason, the most basic components are introduced in this chapter with an
explanation of their logical properties. These components provide a catalog of ele-
mentary digital functional units commonly used as basic building blocks in the
design of digital computers.

2-2 Decoders
Discrete quantities of information are represented in digital computers with binary
codes. A binary code of n bits is capable of representing up to 2n distinct elements
of the coded information. A decoder is a combinational circuit that converts
binary information from the n coded inputs to a maximum of 2n unique outputs.
If the n-bit coded information has unused bit combinations, the decoder may have
less than 2n outputs.

The decoders presented in this section are called n-to-m-line decoders, where
m � 2n. Their purpose is to generate the 2n (or fewer) binary combinations of the
n input variables. A decoder has n inputs and m outputs and is also referred to as
an n � m decoder.

Chapter02.qxd 2/2/2007 6:10 PM Page 43

EON
PreMedia

CONFIRMING PGS

The logic diagram of a 3-to-8-line decoder is shown in Fig. 2-2. The three
data inputs, A0, A1, and A2 are decoded into eight outputs, each output represent-
ing one of the combinations of the three binary input variables. The three invert-
ers provide the complement of the inputs, and each of the eight AND gates
generates one of the binary combination. A particular application of this decoder
is a binary-to-octal conversion. The input variables represent a binary number and
the outputs represent the eight digits of the octal number system. However, a
3-to-8-line decoder can be used for decoding any 3-bit code to provide eight out-
puts, one for each combination of the binary code.

Commercial decoders include one or more enable inputs to control the
operation of the circuit. The decoder of Fig. 2-2 has one enable input, E. The
decoder is enabled when E is equal to 1 and disabled when E is equal to 0.

The operation of the decoder can be clarified using the truth table listed in
Table 2-1. When the enable input E is equal to 0, all the outputs are equal to 0
regardless of the values of the other three data inputs. The three �’s in the table
designate don’t-care conditions. When the enable input is equal to 1, the decoder
operates in a normal fashion. For each possible input combination, there are seven
outputs that are equal to 0 and only one that is equal to 1. The output variable
whose value is equal to 1 represents the octal number equivalent of the binary
number that is available in the input data lines.

44 CHAPTER TWO Digital Components

Enable input

A2
D0

D1

D2

D3

D4

D5

D6

D7

000

001

010

011

100

101

110

111

Enable (E)

A1

A0

Figure 2-2 3-to-8-line decoder.

Chapter02.qxd 2/2/2007 6:10 PM Page 44

EON
PreMedia

CONFIRMING PGS

NAND Gate Decoder
Some decoders are constructed with NAND instead of AND gates. Since a
NAND gate produces the AND operation with an inverted output, it becomes
more economical to generate the decoder outputs in their complement form. A
2-to-4-line decoder with an enable input constructed with NAND gates is shown
in-Fig. 2-3. The circuit operates with complemented outputs and a complemented
enable input E. The decoder is enabled when E is equal to 0. As indicated by the
truth table, only one output is equal to 0 at any given time; the other three outputs
are equal to 1. The output whose value is equal to 0 represents the equivalent
binary number in inputs A1 and A0. The circuit is disabled when E is equal to 1,
regardless of the values of the other two inputs. When the circuit is disabled, none
of the outputs are selected and all outputs are equal to 1. In general, a decoder
may operate with complemented or uncomplemented outputs. The enable input
may be activated with a 0 or with a 1 signal level. Some decoders have two or

SECTION 2-2 Decoders 45

TABLE 2-1 Truth Table for 3-to-8-Line Decoder

Enable Inputs Outputs

E A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0

0 � � � 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 0 1 0 0 0
1 1 0 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 1 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0

Figure 2-3 2-to-4-line decoder with NAND gates.

D0

A0

A1

D1

D2

D3

E

(a) Logic diagram (b) Truth table

E A1 A0 D0 D1 D2 D3

0 0 0 0 1 1 1

0 0 1 1 0 1 1

0 1 0 1 1 0 1

0 1 1 1 1 1 0

1 x x 1 1 1 1

Chapter02.qxd 2/2/2007 6:10 PM Page 45

EON
PreMedia

CONFIRMING PGS

more enable inputs that must satisfy a given logic condition in order to enable the
circuit.

Decoder Expansion
There are occasions when a certain-size decoder is needed but only smaller sizes are
available. When this occurs it is possible to combine two or more decoders with
enable inputs to form a larger decoder. Thus if a 6-to-64-line decoder is needed, it
is possible to construct it with four 4-to-16-line decoders.

Figure 2-4 shows how decoders with enable inputs can be connected to form a
larger decoder. Two 2-to-4-line decoders are combined to achieve a 3-to-8-line
decoder. The two least significant bits of the input are connected to both decoders.
The most significant bit is connected to the enable input of one decoder and through
an inverter to the enable input of the other decoder. It is assumed that each decoder
is enabled when its E input is equal to 1. When E is equal to 0, the decoder is dis-
abled and all its outputs are in the 0 level. When A2 � 0, the upper decoder is enabled
and the lower is disabled. The lower decoder outputs become inactive with all out-
puts at 0. The outputs of the upper decoder generate outputs D0 through D3, depend-
ing on the values of A1 and A0 (while A2 � 0). When A2 � 1, the lower decoder is
enabled and the upper is disabled. The lower decoder output generates the binary
equivalent D4 through D7 since these binary numbers have a 1 in the A2 position.

The example demonstrates the usefulness of the enable input in decoders or
any other combinational logic component. Enable inputs are a convenient feature
for interconnecting two or more circuits for the purpose of expanding the digital
component into a similar function but with more inputs and outputs.

46 CHAPTER TWO Digital Components

Figure 2-4 A 3 � 8 decoder constructed with two 2 � 4 decoders.

2 � 4
decoder

20

21

E

2 � 4
decoder

20

21

E

D0

A0

A1

A2

D1

D2

D3

D4

D5

D6

D7

Chapter02.qxd 2/2/2007 6:10 PM Page 46

EON
PreMedia

CONFIRMING PGS

Encoders
An encoder is a digital circuit that performs the inverse operation of a decoder. An
encoder has 2n (or less) input lines and n outputs lines. The output lines generate
the binary code corresponding to the input value. An example of an encoder is
the octal-to-binary encoder, whose truth table is given in Table 2-2. It has eight
inputs, one for each of the octal digits, and three outputs that generate the corre-
sponding binary number. It is assumed that only one input has a value of 1 at any
given time; otherwise, the circuit has no meaning.

SECTION 2-3 Multiplexers 47

TABLE 2-2 Truth Table for Octal-to-Binary Encoder

Inputs Outputs

D7 D6 D5 D4 D3 D2 D1 D0 A2 A1 A0

0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0 1 1 1

The encoder can be implemented with OR gates whose inputs are deter-
mined directly from the truth table. Output A0 � 1 if the input octal digit is 1 or
3 or 5 or 7. Similar conditions apply for the other two outputs. These conditions
can be expressed by the following Boollean functions:

A0 = D1 + D3 + D5 + D7

A1 = D2 + D3 + D6 + D7

A2 = D4 + D5 + D6 + D7

The encoder can be implemented with three OR gates.

2-3 Multiplexers
A multiplexer is a combinational circuit that receives binary information from one
of 2n input data lines and directs it to a single output line. The selection of a par-
ticular input data line for the output is determined by a set of selection inputs. A
2n-to-1 multiplexer has 2n input data lines and n input selection lines whose bit
combinations determine which input data are selected for the output.

A 4-to-l-line multiplexer is shown in Fig. 2-5. Each of the four data inputs I0

through I3 is applied to one input of an AND gate. The two selection inputs S1 and

multiplexer

Chapter02.qxd 2/2/2007 6:10 PM Page 47

EON
PreMedia

CONFIRMING PGS

S0 are decoded to select a particular AND gate. The outputs of the AND gates are
applied to a single OR gate to provide the single output. To demonstrate the cir-
cuit operation, consider the case when S1S0 = 10. The AND gate associated with
input I2 has two of its inputs equal to 1. The third input of the gate is connected to
I2. The other three AND gates have at least one input equal to 0, which makes
their outputs equal to 0. The OR gate output is now equal to the value of I2, thus
providing a path from the selected input to the output.

The 4-to-l line multiplexer of Fig. 2-5 has six inputs and one output. A truth
table describing the circuit needs 64 rows since six input variables can have 26

binary combinations. This is an excessively long table and will not be shown here.
A more convenient way to describe the operation of multiplexers is by means of
a function table. The function table for the multiplexer is shown in Table 2-3. The
table demonstrates the relationship between the four data inputs and the single
output as a function of the selection inputs S1 and S0. When the selection inputs

48 CHAPTER TWO Digital Components

Figure 2-5 4-to-1-line multiplexer.

I0

I1

I2

I3

S0
S1

Y

TABLE 2-3 Function Table for 4-to-1-Line Multiplexer

Select Output

S1 S0 Y

0 0 I0

0 1 I1

1 0 I2

1 1 I3

Chapter02.qxd 2/2/2007 6:10 PM Page 48

EON
PreMedia

CONFIRMING PGS

are equal to 00, output Y is equal to input I0. When the selection inputs are equal
to 01, input I1 has a path to output Y, and similarly for the other two combinations.
The multiplexer is also called a data selector, since it selects one of many data inputs
and steers the binary information to the output.

The AND gates and inverters in the multiplexer resemble a decoder circuit,
and indeed they decode the input selection lines. In general, a 2n-to-l-line multi-
plexer is constructed from an n-to-2n decoder by adding to it 2n input lines, one
from each data input. The size of the multiplexer is specified by the number 2n of
its data inputs and the single output. It is then implied that it also contains n input
selection lines. The multiplexer is often abbreviated as MUX.

As in decoders, multiplexers may have an enable input to control the oper-
ation of the unit. When the enable input is in the inactive state, the outputs are
disabled, and when it is in the active state, the circuit functions as a normal
multiplexer. The enable input is useful for expanding two or more multiplexers to
a multiplexer with a larger number of inputs.

In some cases two or more multiplexers are enclosed within a single inte-
grated circuit package. The selection and the enable inputs in multiple-unit con-
struction are usually common to all multiplexers. As an illustration, the block
diagram of a quadruple 2-to-l-line multiplexer is shown in Fig. 2-6. The circuit
has four multiplexers, each capable of selecting one of two input lines. Output Y0

can be selected to come from either input A0 or B0. Similarly, output Y1 may have
the value of A1 or B1 and so on. One input selection line S selects one of the lines
in each of the four multiplexers. The enable input E must be active for normal

SECTION 2-3 Multiplexers 49

Figure 2-6 Quadruple 2-to-1 line multiplexers.

Enable

Select

Quadruple
2�1

multiplexers

A0 Y0

Y1

Y2

Y3

A1

A2

A3

B0

B1

B2

B3

E S Y

0 x All 0's

1 0 A

1 1 B

(b) Function table

(a) Block diagram

E

S

data selector

Chapter02.qxd 2/2/2007 6:10 PM Page 49

EON
PreMedia

CONFIRMING PGS

operation. Although the circuit contains four multiplexers, we can also think of it
as a circuit that selects one of two 4-bit data lines. As shown in the function table,
the unit is enabled when E � 1. Then, if S � 0, the four A inputs have a path to
the four outputs. On the other hand, if S � 1, the four B inputs are applied to the
outputs. The outputs have all 0’s when E � 0, regardless of the values of S.

Typical applications of multiplexers are data routing, parallel-to-serial
conversion, and logic function generation. An n-variable logic function can be
generated using n-select inputs of a multiplexer. Digital Multiplexers are thus con-
sidered universal logic modules.

2-4 Registers
A register is a group of flip-flops with each flip-flop capable of storing one bit of
information. An n-bit register has a group of n flip-flops and is capable of storing
any binary information of n bits. In addition to the flip-flops, a register may have
combinational gates that perform certain data-processing tasks. In its broadest def-
inition, a register consists of a group of flip-flops and gates that effect their transi-
tion. The flip-flops hold the binary information and the gates control when and
how new information is transferred into the register.

Various types of registers are available commercially. The simplest register
is one that consists only of flip-flops, with no external gates. Figure 2-7 shows such
a register constructed with four D flip-flops. The common clock input triggers all
flip-flops on the rising edge of each pulse, and the binary data available at the four
inputs are transferred into the 4-bit register. The four outputs can be sampled at
any time to obtain the binary information stored in the register. The clear input
goes to a special terminal in each flip-flop. When this input goes to 0, all flip-flops
are reset asynchronously. The clear input is useful for clearing the register to all
0’s prior to its clocked operation. The clear input must be maintained at logic 1
during normal clocked operation. Note that the clock signal enables the D input
but that the clear input is independent of the clock.

The transfer of new information into a register is referred to as loading the
register. If all the bits of the register are loaded simultaneously with a common
clock pulse transition, we say that the loading is done in parallel. A clock transition
applied to the C inputs of the register of Fig. 2-7 will load all four inputs I0 through
I3 in parallel. In this configuration, the clock must be inhibited from the circuit if
the content of the register must be left unchanged.

Register with Parallel Load
Most digital systems have a master clock generator that supplies a continuous train
of clock pulses. The clock pulses are applied to all flip-flops and registers in the
system. The master clock acts like a pump that supplies a constant beat to all parts
of the system. A separate control signal must be used to decide which specific
clock pulse will have an effect on a particular register.

50 CHAPTER TWO Digital Components

register load

Chapter02.qxd 2/2/2007 6:10 PM Page 50

EON
PreMedia

CONFIRMING PGS

A 4-bit register with a load control input that is directed through gates and
into the D inputs is shown in Fig. 2-8. The C inputs receive clock pulses at all
times. The buffer gate in the clock input reduces the power requirement from the
clock generator. Less power is required when the clock is connected to only one
input gate instead of the power consumption that four inputs would have required
if the buffer were not used.

The load input in the register determines the action to be taken with each
clock pulse. When the load input is 1, the data in the four inputs are transferred into
the register with the next positive transition of a clock pulse. When the load input
is 0, the data inputs are inhibited and the D inputs of the flip-flops are connected to
their outputs. The feedback connection from output to input is necessary because
the D flip-flop does not have a “no change” condition. With each clock pulse, the
D input determines the next state of the output. To leave the output unchanged, it
is necessary to make the D input equal to the present value of the output.

Note that the clock pulses are applied to the C inputs at all times. The load
input determines whether the next pulse will accept new information or leave the

SECTION 2-4 Registers 51

Figure 2-7 4-bit register.

I0

I1

I2

I3 A3

Clear

Clock

A2

A1

A0

D

C

Q

D

C

Q

D

C

Q

D

C

Q

load input

Chapter02.qxd 5/22/2007 1:33 PM Page 51

EON
PreMedia

CONFIRMING PGS

information in the register intact. The transfer of information from the inputs into
the register is done simultaneously with all four bits during a single pulse transition.

2-5 Shift Registers
A register capable of shifting its binary information in one or both directions is
called a shift register. The logical configuration of a shift register consists of a chain
of flip-flops in cascade, with the output of one flip-flop connected to the input of

52 CHAPTER TWO Digital Components

Figure 2-8 4-bit register with parallel load.

D Q

C

D Q

C

D Q

C

D Q

C

A0

A1

A2

A3

Load

Clock

I0

I1

I2

I3

Chapter02.qxd 2/2/2007 6:10 PM Page 52

EON
PreMedia

CONFIRMING PGS

the next flip-flop. All flip-flops receive common clock pulses that initiate the shift
from one stage to the next.

The simplest possible shift register is one that uses only flip-flops, as shown
in Fig. 2-9. The output of a given flip-flop is connected to the D input of the flip-
flop at its right. The clock is common to all flip-flops. The serial input determines
what goes into the leftmost position during the shift. The serial output is taken from
the output of the rightmost flip-flop.

Sometimes it is necessary to control the shift so that it occurs with certain clock
pulses but not with others. This can be done by inhibiting the clock from the input
of the register if we do not want it to shift. When the shift register of Fig. 2-9 is used,
the shift can be controlled by connecting the clock to the input of an AND gate, and
a second input of the AND gate can then control the shift by inhibiting the clock.
However, it is also possible to provide extra circuits to control the shift operation
through the D inputs of the flip-flops rather than the clock input.

Bidirectional Shift Register with Parallel Load
A register capable of shifting in one direction only is called a unidirectional shift
register. A register that can shift in both directions is called a bidirectional shift
register. Some shift registers provide the necessary input and output terminals for
parallel transfer. The most general shift register has all the capabilities listed below.
Others may have some of these capabilities, with at least one shift operation.

1. An input for clock pulses to synchronize all operations.
2. A shift-right operation and a serial input line associated with the shift-right.
3. A shift-left operation and a serial input line associated with the shift-left.
4. A parallel load operation and n input lines associated with the parallel transfer.
5. n parallel output lines.
6. A control state that leaves the information in the register unchanged even

though clock pulses are applied continuously.

A 4-bit bidirectional shift register with parallel load is shown in Fig. 2-10.
Each stage consists of a D flip-flop and a 4 � 1 multiplexer. The two selection
inputs S1 and S0 select one of the multiplexer data inputs for the D flip-flop. The
selection lines control the mode of operation of the register according to the

SECTION 2-5 Shift Registers 53

serial input

D Q

C

D Q

C

D Q

C

D Q

C

Serial
output

Serial
input

Clock

Figure 2-9 4-bit shift register.

Chapter02.qxd 2/2/2007 6:10 PM Page 53

EON
PreMedia

CONFIRMING PGS

54 CHAPTER TWO Digital Components

Figure 2-10 Bidirectional shift register with parallel load.

D Q

C0
1
2
3

4 � 1
MUX

4 � 1
MUX

4 � 1
MUX

4 � 1
MUX

Serial input

Serial input

Clock

S0S0
S1S1

0
1
2
3

S0

I0

A0

A1

A2

A3

I1

I2

I3

S1

0
1
2
3

S0
S1

0
1
2
3

S0
S1

D Q

C

D Q

C

D Q

C

function table shown in Table 2-4. When the mode control S1S0 = 00, data input
0 of each multiplexer is selected. This condition forms a path from the output of
each flip-flop into the input of the same flip-flop. The next clock transition trans-
fers into each flip-flop the binary value it held previously, and no change of state
occurs. When S1S0 = 01, the terminal marked 1 in each multiplexer has a path to

Chapter02.qxd 2/2/2007 6:10 PM Page 54

EON
PreMedia

CONFIRMING PGS

the D input of the corresponding flip-flop. This causes a shift-right operation, with
the serial input data transferred into flip-flop A0 and the content of each flip-flop
Ai�1 transferred into flip-flop Ai for i = 1, 2, 3. When S1S0 � 10 a shift-left opera-
tion results, with the other serial input data going into flip-flop A3 and the content
of flip-flop Ai�1 transferred into flip-flop Ai for i = 0, 1, 2. When S1S0 = 11, the
binary information from each input I0 through I3 is transferred into the corre-
sponding flip-flop, resulting in a parallel load operation. Note that the way the dia-
gram is drawn, the shift-right operation shifts the contents of the register in the
down direction while the shift left operation causes the contents of the register to
shift in the upward direction.

Shift registers are often used to interface digital systems situated remotely
from each other. For example, suppose that it is necessary to transmit an n–bit
quantity between two points. If the distance between the source and the destination
is too far, it will be expensive to use n lines to transmit the n bits in parallel. It may
be more economical to use a single line and transmit the information serially one
bit at a time. The transmitter loads the n-bit data in parallel into a shift register and
then transmits the data from the serial output line. The receiver accepts the data
serially into a shift register through its serial input line. When the entire n bits are
accumulated they can be taken from the outputs of the register in parallel. Thus the
transmitter performs a parallel-to-serial conversion of data and the receiver con-
verts the incoming serial data back to parallel data transfer.

2-6 Binary Counters
A register that goes through a predetermined sequence of states upon the application
of input pulses is called a counter. The input pulses may be clock pulses or may orig-
inate from an external source. They may occur at uniform intervals of time or at ran-
dom. Counters are found in almost all equipment containing digital logic. They are
used for counting the number of occurrences of an event and are useful for generat-
ing timing signals to control the sequence of operations in digital computers.

Of the various sequences a counter may follow, the straight binary sequence
is the simplest and most straightforward. A counter that follows the binary number
sequence is called a binary counter. An n-bit binary counter is a register of n flip-
flops and associated gates that follows a sequence of states according to the binary

SECTION 2-6 Binary Counters 55

TABLE 2-4 Function Table for Register of Fig. 2-10

Mode control

S1 S0 Register operation

0 0 No change
0 1 Shift right (down)
1 0 Shift left (up)
1 1 Parallel load

Chapter02.qxd 2/2/2007 6:10 PM Page 55

EON
PreMedia

CONFIRMING PGS

count of n bits, from 0 to 2n � 1. The design of binary counters can be carried out
by the procedure outlined in Section 1–7 for sequential circuits. A simpler alterna-
tive design procedure may be carried out from a direct inspection of the sequence
of states that the register must undergo to achieve a straight binary count.

Going through a sequence of binary numbers such as 0000, 0001, 0010, 0011,
and so on, we note that the lower-order bit is complemented after every count and
every other bit is complemented from one count to the next if and only if all its
lower-order bits are equal to 1. For example, the binary count from 0111 (7) to
1000 (8) is obtained by (a) complementing the low-order bit, (b) complementing
the second-order bit because the first bit of 0111 is 1, (c) complementing the third-
order bit because the first two bits of 0111 are l’s, and (d) complementing the
fourth-order bit because the first three bits of 0111 are all l’s.

A counter circuit will usually employ flip-flops with complementing capa-
bilities. Both T and JK flip-flops have this property. Remember that a JK flip-flop
is complemented if both its J and K inputs are 1 and the clock goes through a pos-
itive transition. The output of the flip-flop does not change if J = K = 0. In addi-
tion, the counter may be controlled with an enable input that turns the counter on
or off without removing the clock signal from the flip-flops.

Synchronous binary counters have a regular pattern, as can be seen from the
4-bit binary counter shown in Fig. 2-11. The C inputs of all flip-flops receive the
common clock. If the count enable is 0, all J and K inputs are maintained at 0 and
the output of the counter does not change. The first stage A0 is complemented
when the counter is enabled and the clock goes through a positive transition. Each
of the other three flip-flops are complemented when all previous least significant
flip-flops are equal to 1 and the count is enabled. The chain of AND gates gener-
ate the required logic for the J and K inputs. The output carry can be used to
extend the counter to more stages, with each stage having an additional flip-flop
and an AND gate.

Binary Counter with Parallel Load
Counters employed in digital systems quite often require a parallel load capability
for transferring an initial binary number prior to the count operation. Figure 2-12
shows the logic diagram of a binary counter that has a parallel load capability and
can also be cleared to 0 synchronous with the clock. When equal to 1, the clear
input sets all the K inputs to 1, thus clearing all flip-flops with the next clock tran-
sition. The input load control when equal to 1, disables the count operation and
causes a transfer of data from the four parallel inputs into the four flip-flops
(provided that the clear input is 0). If the clear and load inputs are both 0 and the
increment input is 1, the circuit operates as a binary counter.

The operation of the circuit is summarized in Table 2-5. With the clear, load,
and increment inputs all at 0, the outputs do not change even when pulses are
applied to the C terminals. If the clear and load inputs are maintained at logic 0,
the increment input controls the operation of the counter and the outputs change
to the next binary count for each positive transition of the clock. The input data are

56 CHAPTER TWO Digital Components

Chapter02.qxd 2/2/2007 6:10 PM Page 56

EON
PreMedia

CONFIRMING PGS

J A0

A1

A2

A3

Q

C

K

J Q

C

K

J Q

C

K

J Q

C

K

Count enable

Clock

Output
carry

loaded into the flip-flops when the load control input is equal to 1 provided that the
clear is disabled, but the increment input can be 0 or 1. The register is cleared to 0
with the clear control regardless of the values in the load and increment inputs.

Counters with parallel load are very useful in the design of digital comput-
ers. In subsequent chapters we refer to them as registers with load and increment

SECTION 2-6 Binary Counters 57

Figure 2-11 4-bit synchronous binary counter.

Chapter02.qxd 2/2/2007 6:10 PM Page 57

EON
PreMedia

CONFIRMING PGS

58 CHAPTER TWO Digital Components

J Q

C

K

J Q

C

K

J Q

C

K

J Q

C

K

Clear

Load

Increment
(count)

Output
carry

I0

I1

I2

I3

A3

A2

A1

A0

Figure 2-12 4-bit binary counter with parallel load and synchronous clear.

Chapter02.qxd 2/2/2007 6:10 PM Page 58

EON
PreMedia

CONFIRMING PGS

SECTION 2-7 Memory Unit 59

operations. The increment operation adds one to the content of a register. By
enabling the count input during one clock period, the content of the register can
be incremented by one.

2-7 Memory Unit
A memory unit is a collection of storage cells together with associated circuits
needed to transfer information in and out of storage. The memory stores binary
information in groups of bits called words. A word in memory is an entity of bits
that move in and out of storage as a unit. A memory word is a group of l’s and 0’s
and may represent a number, an instruction code, one or more alphanumeric
characters, or any other binary-coded information. A group of eight bits is called
a byte. Most computer memories use words whose number of bits is a multiple of
8. Thus a 16-bit word contains two bytes, and a 32-bit word is made up of four
bytes. The capacity of memories in commercial computers is usually stated as the
total number of bytes that can be stored.

The internal structure of a memory unit is specified by the number of words
it contains and the number of bits in each word. Special input lines called address
lines select one particular word. Each word in memory is assigned an identifica-
tion number, called an address, starting from 0 and continuing with 1, 2, 3, up to
2k � 1 where k is the number of address lines. The selection of a specific word
inside the memory is done by applying the k-bit binary address to the address
lines. A decoder inside the memory accepts this address and opens the paths
needed to select the bits of the specified word. Computer memories may range
from 1024 words, requiring an address of 10 bits, to 232 words, requiring 32
address bits. It is customary to refer to the number of words (or bytes) in a mem-
ory with one of the letters K (kilo), M (mega), or G (giga). K is equal to 210, M is
equal to 220, and G is equal to 230. Thus, 64K = 216, 2M = 221, and 4G = 232.

Two major types of memories are used in computer systems: random-access
memory (RAM) and read-only memory (ROM). These semiconductor memories
are classified into Random Access Memories (RAMs) and Sequential Access
Memories (SAMs) based on access time. Memories constructed with shift regis-
ters, Charge Coupled Devices (CCDs), or bubble memories are examples of
SAMs. RAMs are categorized into ROMs, Read Mostly Memories (RMMs), and
Read Write Memories (RWMs). ROMs are of two types: Masked Programmed

TABLE 2-5 Function Table for the Register of Fig. 2-12

Clock Clear Load Increment Operation

↑ 0 0 0 No change
↑ 0 0 1 Increment count by 1
↑ 0 1 � Load inputs I0 through I3

↑ 1 � � Clear outputs to 0

increment

word

byte

Chapter02.qxd 2/2/2007 6:10 PM Page 59

EON
PreMedia

CONFIRMING PGS

ROMs and user Programmed PROMs. Two types of RMMs are Erasable and
Programmable (EPROM), and Electrically Erasable (EEPROM). RWMs are
Static RAM (SRAM) and Dynamic RAM (DRAM). Static RAMs have memory
cells as common Flip-Flops. Dynamic RAMs have memory cells that must be
refreshed, read and written periodically to avoid loss of memory cells.

Random-Access Memory
In random-access memory (RAM) the memory cells can be accessed for informa-
tion transfer from any desired random location. That is, the process of locating a
word in memory is the same and requires an equal amount of time no matter
where the cells are located physically in memory: thus the name “random access.”

Communication between a memory and its environment is achieved
through data input and output lines, address selection lines, and control lines that
specify the direction of transfer. A block diagram of a RAM unit is shown in
Fig. 2-13. The n data input lines provide the information to be stored in memory,
and the n data output lines supply the information coming out of memory. The
k address lines provide a binary number of k bits that specify a particular word
chosen among the 2k available inside the memory. The two control inputs specify
the direction of transfer desired.

The two operations that a random-access memory can perform are the write
and read operations. The write signal specifies a transfer-in operation and the read
signal specifies a transfer-out operation. On accepting one of these control signals,
the internal circuits inside the memory provide the desired function. The steps
that must be taken for the purpose of transferring a new word to be stored into
memory are as follows:

1. Apply the binary address of the desired word into the address lines.
2. Apply the data bits that must be stored in memory into the data input lines.
3. Activate the write input.

60 CHAPTER TWO Digital Components

RAM

write and read
operations

Memory unit
2k words

n bits per word

n data input lines

n data output lines

k address lines
Read

Write

Figure 2-13 Block diagram of random access memory (RAM).

Chapter02.qxd 2/2/2007 6:10 PM Page 60

EON
PreMedia

CONFIRMING PGS

The memory unit will then take the bits presently available in the input data lines
and store them in the word specified by the address lines.

The steps that must be taken for the purpose of transferring a stored word
out of memory are as follows:

1. Apply the binary address of the desired word into the address lines.
2. Activate the read input.

The memory unit will then take the bits from the word that has been selected by
the address and apply them into the output data lines. The content of the selected
word does not change after reading.

Read-Only Memory
As the name implies, a read-only memory (ROM) is a memory unit that performs
the read operation only; it does not have a write capability. This implies that the
binary information stored in a ROM is made permanent during the hardware
production of the unit and cannot be altered by writing different words into it.
Whereas a RAM is a general-purpose device whose contents can be altered dur-
ing the computational process, a ROM is restricted to reading words that are per-
manently stored within the unit. The binary information to be stored, specified by
the designer, is then embedded in the unit to form the required interconnection
pattern. ROMs come with special internal electronic fuses that can be “pro-
grammed” for a specific configuration. Once the pattern is established, it stays
within the unit even when power is turned off and on again.

An m � n ROM is an array of binary cells organized into m words of n bits
each. As shown in the block diagram of Fig. 2-14, a ROM has k address input lines
to select one of 2k = m words of memory, and n output lines, one for each bit of
the word. An integrated circuit ROM may also have one or more enable inputs
for expanding a number of packages into a ROM with larger capacity.

SECTION 2-7 Memory Unit 61

Figure 2-14 Block diagram of read only memory (ROM).

k address input lines

n data output lines

m � n ROM
(m � 2k)

Chapter02.qxd 2/2/2007 6:10 PM Page 61

EON
PreMedia

CONFIRMING PGS

The ROM does not need a read-control line since at any given time, the out-
put lines automatically provide the n bits of the word selected by the address value.
Because the outputs are a function of only the present inputs (the address lines), a
ROM is classified as a combinational circuit. In fact, a ROM is constructed internally
with decoders and a set of OR gates. There is no need for providing storage capa-
bilities as in a RAM, since the values of the bits in the ROM are permanently fixed.

ROMs find a wide range of applications in the design of digital systems.
Basically, a ROM generates an input–output relation specified by a truth table.
As such, it can implement any combinational circuit with k inputs and n outputs.
When employed in a computer system as a memory unit, the ROM is used for
storing fixed programs that are not to be altered and for tables of constants that
are not subject to change. ROM is also employed in the design of control units
for digital computers. As such, they are used to store coded information that rep-
resents the sequence of internal control variables needed for enabling the various
operations in the computer. A control unit that utilizes a ROM to store binary
control information is called a microprogrammed control unit. This subject is dic-
sussed in more detail in Chapter 7.

Types of ROMs
The required paths in a ROM may be programmed in three different ways. The
first, mask programming, is done by the semiconductor company during the last fab-
rication process of the unit. The procedure for fabricating a ROM requires that the
customer fill out the truth table that he or she wishes the ROM to satisfy. The truth
table may be submitted in a special form provided by the manufacturer or in a
specified format on a computer output medium. The manufacturer makes the cor-
responding mask for the paths to produce the l’s and 0’s according to the cus-
tomer’s truth table. This procedure is costly because the vendor charges the
customer a special fee for custom masking the particular ROM. For this reason,
mask programming is economical only if a large quantity of the same ROM con-
figuration is to be ordered.

For small quantities it is more economical to use a second type of ROM
called a programmable read-only memory or PROM. When ordered, PROM units
contain all the fuses intact, giving all l’s in the bits of the stored words. The fuses
in the PROM are blown by application of current pulses through the output ter-
minals for each address. A blown fuse defines a binary 0 state, and an intact fuse
gives a binary 1 state. This allows users to program PROMs in their own labora-
tories to achieve the desired relationship between input addresses and stored
words. Special instruments called PROM programmers are available commercially
to facilitate this procedure. In any case, all procedures for programming ROMs
are hardware procedures even though the word “programming” is used.

The hardware procedure for programming ROMs or PROMs is irreversible,
and once programmed, the fixed pattern is permanent and cannot be altered. Once
a bit pattern has been established, the unit must be discarded if the bit pattern is to
be changed. A third type of ROM available is called erasable PROM or EPROM.

62 CHAPTER TWO Digital Components

PROM

Chapter02.qxd 2/2/2007 6:10 PM Page 62

EON
PreMedia

CONFIRMING PGS

The EPROM can be restructured to the initial value even though its fuses have been
blown previously. When the EPROM is placed under a special ultraviolet light for
a given period of time, the shortwave radiation discharges the internal gates that
serve as fuses. After erasure, the EPROM returns to its initial state and can be repro-
grammed to a new set of words. Certain PROMs can be erased with electrical sig-
nals instead of ultraviolet light. These PROMs are called electrically erasable PROM or
EEPROM. Flash memory is a form of EEPROM in which a block of bytes can be
erased in a very short duration. Example applications of EEPROM devices are:

1. storing current time and date in a machine.
2. storing port statusses.

Examples of flash memory device applications are:

1. storing messages in a mobile phone.
2. storing photographs in a digital camera.

SECTION 2-7 Memory Unit 63

EEPROM

PROBLEMS

2-1. TTL SSI come mostly in 14-pin 1C packages. Two pins are reserved for power
supply and the other pins are used for input and output terminals. How many
circuits are included in one such package if it contains the following type of cir-
cuits? (a) Inverters; (b) two-input exclusive-OR gates; (c) three-input OR gates;
(d) four-input AND gates; (e) five-input NOR gates; (f) eight-input NAND gates;
(g) clocked JK flip-flops with asynchronous clear.

2-2. MSI chips perform elementary digital functions such as decoders, multiplexers,
registers, and counters. The following are TTL-type integrated circuits that pro-
vide such functions. Find their description in a data book and compare them
with the corresponding component presented in this chapter.
a. IC type 74155 dual 2-to-4-line decoders.
b. IC type 74157 quadruple 2-to-l-line multiplexers.
c. IC type 74194 4-bit bidirectional shift register with parallel load.
d. IC type 74163 4-bit binary counter with parallel load and synchronous clear.

2-3. Construct a 5-to-32-line decoder with four 3-to-8-line decoders with enable and
one 2-to-4-line decoder. Use block diagrams similar to Fig. 2-4.

2-4. Draw the logic diagram of a 2-to-4-line decoder with only NOR gates. Include
an enable input.

2-5. Modify the decoder of Fig. 2-3 so that the circuit is enabled when E � 1 and
disabled when E � 0. List the modified truth table.

2-6. Draw the logic diagram of an eight-input, three-output encoder whose truth
table is given in Table 2-2. What is the output when all the inputs are equal to
0? What is the output when only input D0 is equal to 0? Establish a procedure
that will distinguish between these two cases.

Chapter02.qxd 2/2/2007 6:10 PM Page 63

EON
PreMedia

CONFIRMING PGS

2-7. Construct a 16-to-l-line multiplexer with two 8-to-l-line multiplexers and one
2-to-l-line multiplexer. Use block diagrams for the three multiplexers.

2-8. Draw the block diagram of a dual 4-to-l-line multiplexers and explain its
operation by means of a function table.

2-9. Include a two-input AND gate with the register of Fig. 2-7 and connect the gate
output to the clock inputs of all the flip-flops. One input of the AND gate receives
the clock pulses from the clock pulse generator. The other input of the AND gate
provides a parallel load control. Explain the operation of the modified register.

2-10. What is the purpose of the buffer gate in the clock input of the register of Fig. 2-8?

2-11. Include a synchronous clear capability to the register with parallel load of Fig. 2-8.

2-12. The content of a 4-bit register is initially 1101. The register is shifted six times to
the right with the serial input being 101101. What is the content of the register
after each shift?

2-13. What is the difference between serial and parallel transfer? Using a shift register
with parallel load, explain how to convert serial input data to parallel output and
parallel input data to serial output.

2-14. A ring counter is a shift register as in Fig. 2-9 with the serial output connected to
the serial input. Starting from an initial state of 1000, list the sequence of states
of the four flip-flops after each shift.

2-15. The 4-bit bidirectional shift register with parallel load shown in Fig. 2-10 is
enclosed within one IC package.
a. Draw a block diagram of the IC showing all inputs and outputs. Include two

pins for power supply.
b. Draw a block diagram using two ICs to produce an 8-bit bidirectional shift

register with parallel load.

2-16. How many flip-flops will be complemented in a 10-bit binary counter to reach
the next count after (a) 1001100111; (b) 0011111111?

2-17. Show the connections between four 4-bit binary counters with parallel load
(Fig. 2-12) to produce a 16-bit binary counter with parallel load. Use a block dia-
gram for each 4-bit counter.

2-18. Show how the binary counter with parallel load of Fig. 2-12 can be made to
operate as a divide-by-N counter (i.e., a counter that counts from 0000 to N-and
back to 0000). Specifically show the circuit for a divide-by-10 counter using the
counter of Fig. 2-12 and an external AND gate.

2-19. The following memory units are specified by the number of words times the
number of bits per word. How many address lines and input-output data lines
are needed in each case? (a) 2K � 16; (b) 64K � 8; (c) 16M � 32; (d) 4G � 64.

2-20. Specify the number of bytes that can be stored in the memories listed in Prob. 2–19.

2-21. How many 128 � 8 memory chips are needed to provide a memory capacity of
4096 � 16?

2-22. Given a 32 � 8 ROM chip with an enable input, show the external connections
necessary to construct a 128 � 8 ROM with four chips and a decoder.

2-23. A ROM chip of 4096 � 8 bits has two enable inputs and operates from a 5-volt
power supply. How many pins are needed for the integrated circuit package?
Draw a block diagram and label all input and output terminals in the ROM.

64 CHAPTER TWO Digital Components

Chapter02.qxd 2/2/2007 6:10 PM Page 64

EON
PreMedia

CONFIRMING PGS

1. Hill, F. J., and G. R. Peterson, Introduction to Switching Theory and Logical Design, 3rd
ed. New York: John Wiley, 1981.

2. Mano, M. M., Digital Design, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1991.

3. Roth, C. H., Fundamentals of Logic Design, 3rd ed. St. Paul, MN: West Publishing,
1985.

4. Sandige, R. S., Modern Digital Design. New York: McGraw-Hill, 1990.

5. Shiva, S. G., Introduction to Logic Design. Glenview, II: Scott, Foresman, 1988.

6. Wakerly, J. F., Digital Design Principles and Practices. Englewood Cliffs, NJ: Prentice
Hall, 1990.

7. Ward, S. A., and R. H. Halstead, Jr., Computation Structures. Cambridge, MA: MIT
Press, 1990.

SECTION 2-7 Memory Unit 65

REFERENCES

Chapter02.qxd 2/2/2007 6:10 PM Page 65

EON
PreMedia

CONFIRMING PGS

Chapter02.qxd 2/2/2007 6:10 PM Page 66

EON
PreMedia

CONFIRMING PGS

67

IN THIS CHAPTER

3-1 Data Types
3-2 Complements
3-3 Fixed-Point Representation
3-4 Floating-Point Representation
3-5 Other Binary Codes
3-6 Error Detection Codes

3-1 Data Types
The term data refers to factual information used for analysis or reasoning.
Data itself has no meaning, but becomes information when it is assigned a
meaning or interpreted. Information is a collection of facts or data that is
communicated. Binary information in digital computers is stored in memory
or processor registers. Registers contain either data or control information.
Control information is a bit or a group of bits used to specify the sequence of
command signals needed for manipulation of the data in other registers. Data
are numbers and other binary-coded information that are operated on to
achieve required computational results. In this chapter we present the most
common types of data found in digital computers and show how the various
data types are represented in binary-coded form in computer registers.

The data types found in the registers of digital computers may be classified
as being one of the following categories: (1) numbers used in arithmetic compu-
tations, (2) letters of the alphabet used in data processing, and (3) other discrete
symbols used for specific purposes. All types of data, except binary numbers, are
represented in computer registers in binary-coded form. This is because registers
are made up of flip-flops and flip-flops are two-state devices that can store only
l’s and 0’s. The binary number system is the most natural system to use in a dig-
ital computer. But sometimes it is convenient to employ different number sys-
tems, especially the decimal number system, since it is used by people to
perform arithmetic computations.

C H A P T E R T H R E E

Data Representation

Chapter03.qxd 2/2/2007 6:16 PM Page 67

EON
PreMedia

CONFIRMING PGS

68 CHAPTER THREE Data Representation

Number Systems
A number system of base, or radix, r is a system that uses distinct symbols for
r digits. Numbers are represented by a string of digit symbols. To determine
the quantity that the number represents, it is necessary to multiply each digit
by an integer power of r and then form the sum of all weighted digits. For
example, the decimal number system in everyday use employs the radix 10
system. The 10 symbols are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The string of digits
724.5 is interpreted to represent the quantity

7 � 102 � 2 � 101 � 4 � 100 � 5 � 10�1

that is, 7 hundreds, plus 2 tens, plus 4 units, plus 5 tenths. Every decimal num-
ber can be similarly interpreted to find the quantity it represents.

The binary number system uses the radix 2. The two digit symbols used
are 0 and 1. The string of digits 101101 is interpreted to represent the quantity

1 � 25 � 0 � 24 � 1 � 23 � 1 � 22 � 0 � 21 � 1 � 20 � 45

To distinguish between different radix numbers, the digits will be enclosed in
parentheses and the radix of the number inserted as a subscript. For example,
to show the equality between decimal and binary forty-five we will write
(101101)2 � (45)10.

Besides the decimal and binary number systems, the octal (radix 8) and
hexadecimal (radix 16) are important in digital computer work. The eight sym-
bols of the octal system are 0, 1, 2, 3, 4, 5, 6, and 7. The 16 symbols of the hexa-
decimal system are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. The last six
symbols are, unfortunately, identical to the letters of the alphabet and can
cause confusion at times. However, this is the convention that has been
adopted. When used to represent hexadecimal digits, the symbols A, B, C, D,
E, F correspond to the decimal numbers 10, 11, 12, 13, 14, 15, respectively.

A number in radix r can be converted to the familiar decimal system by
forming the sum of the weighted digits. For example, octal 736.4 is converted
to decimal as follows:

(736.4)8 � 7 � 82 � 3 � 81 � 6 � 80 � 4 � 8�1

� 7 � 64 � 3 � 8 � 6 � 1 � 4/8 � (478.5)10

The equivalent decimal number of hexadecimal F3 is obtained from the fol-
lowing calculation:

(F3)16 � F � 16 � 3 � 15 � 16 � 3 � (243)10

Conversion from decimal to its equivalent representation in the radix r system
is carried out by separating the number into its integer and fraction parts and

radix

decimal

binary

octal
hexadecimal

conversion

Chapter03.qxd 2/2/2007 6:16 PM Page 68

EON
PreMedia

CONFIRMING PGS

SECTION 3-1 Data Types 69

converting each part separately. The conversion of a decimal integer into a
base r representation is done by successive divisions by r and accumulation of
the remainders. The conversion of a decimal fraction to radix r representation
is accomplished by successive multiplications by r and accumulation of the
integer digits so obtained. Figure 3-1 demonstrates these procedures.

The conversion of decimal 41.6875 into binary is done by first separat-
ing the number into its integer part 41 and fraction part .6875. The integer part
is converted by dividing 41 by r � 2 to give an integer quotient of 20 and a
remainder of 1. The quotient is again divided by 2 to give a new quotient and
remainder. This process is repeated until the integer quotient becomes 0. The
coefficients of the binary number are obtained from the remainders with the
first remainder giving the low-order bit of the converted binary number.

The fraction part is converted by multiplying it by r � 2 to give an
integer and a fraction. The new fraction (without the integer) is multiplied
again by 2 to give a new integer and a new fraction. This process is repeated
until the fraction part becomes zero or until the number of digits obtained
gives the required accuracy. The coefficients of the binary fraction are
obtained from the integer digits with the first integer computed being the
digit to be placed next to the binary point. Finally, the two parts are com-
bined to give the total required conversion.

Octal and Hexadecimal Numbers
The conversion from and to binary, octal, and hexadecimal representation
plays an important part in digital computers. Since 23 � 8 and 24 � 16, each
octal digit corresponds to three binary digits and each hexadecimal digit cor-
responds to four binary digits. The conversion from binary to octal is easily
accomplished by partitioning the binary number into groups of three bits
each. The corresponding octal digit is then assigned to each group of bits and
the string of digits so obtained gives the octal equivalent of the binary num-
ber. Consider, for example, a 16-bit register. Physically, one may think of the

Figure 3-1 Conversion of decimal 41.6875 into binary.

Integer � 41 Fraction � 0.6875
41
20
10
5
2
1
0

1
0
0
1
0
1

(41)10 � (101001)2
(41.6875)10 � (101001.1011)2

(0.6875)10 � (0.1011)2

0.6875
2

1.3750
� 2

0.7500
� 2

1.5000
� 2

1.0000

Chapter03.qxd 2/2/2007 6:16 PM Page 69

EON
PreMedia

CONFIRMING PGS

70 CHAPTER THREE Data Representation

register as composed of 16 binary storage cells, with each cell capable c hold-
ing either a 1 or a 0. Suppose that the bit configuration stored in the register
is as shown in Fig. 3-2. Since a binary number consists of a string of l’s and 0’s,
the 16-bit register can be used to store any binary number from 0 to 216 � 1.
For the particular example shown, the binary number stored in the register is
the equivalent of decimal 44899. Starting from the low-order bit, we partition
the register into groups of three bits each (the sixteenth bit remains in a group
by itself). Each group of three bits is assigned its octal equivalent and placed
on top of the register. The string of octal digits so obtained represents the octal
equivalent of the binary number.

Conversion from binary to hexadecimal is similar except that the bits are
divided into groups of four. The corresponding hexadecimal digit for each
group of four bits is written as shown below the register of Fig. 3-2. The string
of hexadecimal digits so obtained represents the hexadecimal equivalent of
the binary number. The corresponding octal digit for each group of three bits
is easily remembered after studying the first eight entries listed in Table 3-1.
The correspondence between a hexadecimal digit and its equivalent 4-bit
code can be found in the first 16 entries of Table 3-2.

TABLE 3-1 Binary-Coded Octal Numbers

Octal Binary-coded Decimal
number octal equivalent

0 000 0
1 001 1
2 010 2 Code
3 011 3 for one
4 100 4 octal
5 101 5 digit
6 110 6
7 111 7

10 001 000 8
11 001 001 9
12 001 010 10
24 010 100 20
62 110 010 50

143 001 100 011 99
370 011 111 000 248

Figure 3-2 Binary, octal, and hexadecimal conversion.

1

1 0 1 0 1 1 1 1 0 1 1 0 0 0 1 1

2

A F 6 3

7 5 4 3 Octal

Binary

Hexadecimal

Chapter03.qxd 2/2/2007 6:16 PM Page 70

EON
PreMedia

CONFIRMING PGS

SECTION 3-1 Data Types 71

Table 3-1 lists a few octal numbers and their representation in registers
in binary-coded form. The binary code is obtained by the procedure
explained above. Each octal digit is assigned a 3-bit code as specified by the
entries of the first eight digits in the table. Similarly, Table 3-2 lists a few hexa-
decimal numbers and their representation in registers in binary-coded form.
Here the binary code is obtained by assigning to each hexadecimal digit the
4-bit code listed in the first 16 entries of the table.

Comparing the binary-coded octal and hexadecimal numbers with
their binary number equivalent we find that the bit combination in all three
representations is exactly the same. For example, decimal 99, when con-
verted to binary, becomes 1100011. The binary-coded octal equivalent of
decimal 99 is 001 100 011 and the binary-coded hexadecimal of decimal 99
is 0110 0011. If we neglect the leading zeros in these three binary represen-
tations, we find that their bit combination is identical. This should be so
because of the straightforward conversion that exists between binary num-
bers and octal or hexadecimal. The point of all this is that a string of l’s and
0’s stored in a register could represent a binary number, but this same string
of bits may be interpreted as holding an octal number in binary-coded form
(if we divide the bits in groups of three) or as holding a hexadecimal num-
ber in binary-coded form (if we divide the bits in groups of four).

TABLE 3-2 Binary-Coded Hexadecimal Numbers

Hexadecimal Binary-coded Decimal
number hexadecimal equivalent

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6 Code
7 0111 7 for one
8 1000 8 hexadecimal
9 1001 9 digit
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15

14 0001 0100 20
32 0011 0010 50
63 0110 0011 99
F8 1111 1000 248

Chapter03.qxd 2/2/2007 6:16 PM Page 71

EON
PreMedia

CONFIRMING PGS

72 CHAPTER THREE Data Representation

The registers in a digital computer contain many bits. Specifying the con-
tent of registers by their binary values will require a long string of binary dig-
its. It is more convenient to specify content of registers by their octal or
hexadecimal equivalent. The number of digits is reduced by one-third in the
octal designation and by one-fourth in the hexadecimal designation. For
example, the binary number 1111 1111 1111 has 12 digits. It can be expressed
in octals as 7777 (four digits) or in hexadecimal as FFF (three digits). Computer
manuals invariably choose either the octal or the hexadecimal designation for
specifying contents of registers.

Decimal Representation
The binary number system is the most natural system for a computer, but peo-
ple are accustomed to the decimal system. One way to solve this conflict is to
convert all input decimal numbers into binary numbers, let the computer per-
form all arithmetic operations in binary and then convert the binary results
back to decimal for the human user to understand. However, it is also possible
for the computer to perform arithmetic operations directly with decimal num-
bers provided they are placed in registers in a coded form. Decimal numbers
enter the computer usually as binary-coded alphanumeric characters. These
codes, introduced later, may contain from six to eight bits for each decimal
digit. When decimal numbers are used for internal arithmetic computations,
they are converted to a binary code with four bits per digit.

A binary code is a group of n bits that assume up to 2n distinct combina-
tions of l’s and 0’s with each combination representing one element of the set
that is being coded. For example, a set of four elements can be coded by a 2-bit
code with each element assigned one of the following bit combinations; 00, 01,
10, or 11. A set of eight elements requires a 3-bit code, a set of 16 elements
requires a 4-bit code, and so on. A binary code will have some unassigned bit
combinations if the number of elements in the set is not a multiple power of 2.
The 10 decimal digits form such a set. A binary code that distinguishes among
10 elements must contain at least four bits, but six combinations will remain
unassigned. Numerous different codes can be obtained by arranging four bits
in 10 distinct combinations. The bit assignment most commonly used for the
decimal digits is the straight binary assignment listed in the first 10 entries of
Table 3-3. This particular code is called binary-coded decimal and is commonly
referred to by its abbreviation BCD. Other decimal codes are sometimes used
and a few of them are given in Sec. 3-5.

It is very important to understand the difference between the conversion
of decimal numbers into binary and the binary coding of decimal numbers.
For example, when converted to a binary number, the decimal number 99 is
represented by the string of bits 1100011, but when represented in BCD, it
becomes 1001 1001. The only difference between a decimal number repre-
sented by the familiar digit symbols 0, 1, 2, . . . , 9 and the BCD symbols
0001, 0010, . . . , 1001 is in the symbols used to represent the digits—the

binary code

BCD

Chapter03.qxd 2/2/2007 6:16 PM Page 72

EON
PreMedia

CONFIRMING PGS

SECTION 3-1 Data Types 73

number itself is exactly the same. A few decimal numbers and their repre-
sentation in BCD are listed in Table 3-3.

Alphanumeric Representation
Many applications of digital computers require the handling of data that
consist not only of numbers, but also of the letters of the alphabet and cer-
tain special characters. An alphanumeric character set is a set of elements that
includes the 10 decimal digits, the 26 letters of the alphabet and a number of
special characters, such as $, �, and �. Such a set contains between 32 and
64 elements (if only uppercase letters are included) or between 64 and 128
(if both uppercase and lowercase letters are included). In the first case, the
binary code will require six bits and in the second case, seven bits. The stan-
dard alphanumeric binary code is the ASCII (American Standard Code for
Information Interchange), which uses seven bits to code 128 characters. The
binary code for the uppercase letters, the decimal digits, and a few special
characters is listed in Table 3-4. Note that the decimal digits in ASCII can be
converted to BCD by removing the three high-order bits, 011. A complete
list of ASCII characters is provided in Table 11-1.

Binary codes play an important part in digital computer operations.
The codes must be in binary because registers can only hold binary infor-
mation. One must realize that binary codes merely change the symbols, not
the meaning of the discrete elements they represent. The operations speci-
fied for digital computers must take into consideration the meaning of the

character

ASCII

TABLE 3-3 Binary-Coded Decimal (BCD) Numbers

Decimal Binary-coded decimal
number (BCD) number

0 0000
1 0001
2 0010
3 0011 Code
4 0100 for one
5 0101 decimal
6 0110 digit
7 0111
8 1000
9 1001

10 0001 0000
20 0010 0000
50 0101 0000
99 1001 1001

248 0010 0100 1000

Chapter03.qxd 2/2/2007 6:16 PM Page 73

EON
PreMedia

CONFIRMING PGS

74 CHAPTER THREE Data Representation

bits stored in registers so that operations are performed on operands of the
same type. In inspecting the bits of a computer register at random, one is
likely to find that it represents some type of coded information rather than a
binary number.

Binary codes can be formulated for any set of discrete elements such as
the musical notes and chess pieces and their positions on the chessboard.
Binary codes are also used to formulate instructions that specify control
information for the computer. This chapter is concerned with data represen-
tation. Instruction codes are discussed in Chap. 5.

3-2 Complements
Complements are used in digital computers for simplifying the subtraction
operation and for logical manipulation. There are two types of complements
for each base r system: the r ’s complement and the (r � l)’s complement.

TABLE 3-4 American Standard Code for information Interchange (ASCII)

Binary Binary
Character code Character code

A 100 0001 0 011 0000
B 100 0010 1 011 0001
C 100 0011 2 011 0010
D 100 0100 3 011 0011
E 100 0101 4 011 0100
F 100 0110 5 011 0101
G 100 0111 6 011 0110
H 100 1000 7 011 0111
I 100 1001 8 011 1000
J 100 1010 9 011 1001
K 100 1011
L 100 1100
M 100 1101 space 010 0000
N 100 1110 . 010 1110
O 100 1111 (010 1000
P 101 0000 � 010 1011
Q 101 0001 $ 010 0100
R 101 0010 * 010 1010
S 101 0011) 010 1001
T 101 0100 � 010 1101
U 101 0101 / 010 1111
V 101 0110 , 010 1100
W 101 0111 � 011 1101
X 101 1000
Y 101 1001
Z 101 1010

Chapter03.qxd 2/2/2007 6:16 PM Page 74

EON
PreMedia

CONFIRMING PGS

SECTION 3-2 Complements 75

When the value of the base r is substituted in the name, the two types are
referred to as the 2’s and l’s complement for binary numbers and the 10’s and
9’s complement for decimal numbers.

(r �� l)’s Complement
Given a number N in base r having n digits, the (r � l)’s complement of N is
defined as (rn � 1) � N. For decimal numbers r � 10 and r � 1 � 9, so the 9’s
complement of N is (10n � 1) � N. Now, 10n represents a number that consists
of a single 1 followed by n 0’s. 10n � 1 is a number represented by n 9’s. For
example, with n � 4 we have 104 � 10000 and 104 � 1 � 9999. It follows that
the 9’s complement of a decimal number is obtained by subtracting each digit
from 9. For example, the 9’s complement of 546700 is 999999 � 546700 �
453299 and the 9’s complement of 12389 is 99999 � 12389 = 87610.

For binary numbers, r � 2 and r � 1 � 1, so the 1’s complement of N is
(2n �1) � N. Again, 2n is represented by a binary number that consists of a
1 followed by n 0’s. 2n � 1 is a binary number represented by n l’s. For exam-
ple, with n � 4, we have 24 � (10000)2 and 24 � 1 � (1111)2. Thus the l’s com-
plement of a binary number is obtained by subtracting each digit from 1.
However, the subtraction of a binary digit from 1 causes the bit to change from
0 to 1 or from 1 to 0. Therefore, the l’s complement of a binary number is
formed by changing l’s into 0’s and 0’s into l’s. For example, the l’s comple-
ment of 1011001 is 0100110 and the l’s complement of 0001111 is 1110000.

The (r � l)’s complement of octal or hexadecimal numbers are obtained
by subtracting each digit from 7 or F (decimal 15) respectively.

(r ’s) Complement
The r ’s complement of an n -digit number N in base r is defined as rn � N for
N � 0 and 0 for N � 0. Comparing with the (r � l)’s complement, we note that
the r ’s complement is obtained by adding 1 to the (r � l)’s complement since
rn � N � [(rn � 1) � N] � 1. Thus the 10’s complement of the decimal 2389
is 7610 � 1 � 7611 and is obtained by adding 1 to the 9’s complement value.
The 2’s complement of binary 101100 is 010011 � 1 � 010100 and is obtained
by adding 1 to the l’s complement value.

Since 10n is a number represented by a 1 followed by n 0’s, then 10n � N,
which is the 10’s complement of N, can be formed also be leaving all least sig-
nificant 0’s unchanged, subtracting the first nonzero least significant digit from
10, and then subtracting all higher significant digits from 9. The 10’s complement
of 246700 is 753300 and is obtained by leaving the two zeros unchanged, sub-
tracting 7 from 10, and subtracting the other three digits from 9. Similarly, the 2’s
complement can be formed by leaving all least significant 0’s and the first 1
unchanged, and then replacing l’s by 0’s and 0’s by l’s in all other higher, signif-
icant bits. The 2’s complement of 1101100 is 0010100 and is obtained by leaving
the two low-order 0’s and the first 1 unchanged, and then replacing l’s by 0’s and
0’s by l’s in the other four most significant bits.

1’s complement

10’s complement

2’s complement

9’s complement

Chapter03.qxd 2/2/2007 6:16 PM Page 75

EON
PreMedia

CONFIRMING PGS

76 CHAPTER THREE Data Representation

In the definitions above it was assumed that the numbers do not have a
radix point. If the original number N contains a radix point, it should be
removed temporarily to form the r ’s or (r � l)’s complement. The radix point
is then restored to the complemented number in the same relative position. It
is also worth mentioning that the complement of the complement restores the
number to its original value. The r ’s complement of N is rn � N. The comple-
ment of the complement is rn � (rn � N) � N giving back the original number.

Subtraction of Unsigned Numbers
The direct method of subtraction taught in elementary schools uses the bor-
row concept. In this method we borrow a 1 from a higher significant position
when the minuend digit is smaller than the corresponding subtrahend digit.
This seems to be easiest when people perform subtraction with paper and pen-
cil. When subtraction is implemented with digital hardware, this method is
found to be less efficient than the method that uses complements.

The subtraction of two n -digit unsigned numbers M � N (N � 0) in base
r can be done as follows:

1. Add the minuend M to the r ’s complement of the subtrahend N. This
performs M � (rn � N) � M � N � rn.

2. If M � N, the sum will produce an end carry rn which is discarded, and
what is left is the result M � N.

3. If M � N, the sum does not produce an end carry and is equal to
r n � (N � M), which is the r ’s complement of (N � M). To obtain the
answer in a familiar form, take the r ’s complement of the sum and
place a negative sign in front.

Consider, for example, the subtraction 72532 � 13250 � 59282. The 10’s
complement of 13250 is 86750. Therefore:

M � 72532
10’s complement of N � �86750

Sum � 159282
Discard end carry 105 ��100000

Answer � 59282

Now consider an example with M � N. The subtraction 13250 � 72532
produces negative 59282. Using the procedure with complements, we have

M � 13250
10’s complement of N � �27468

Sum � 40718

subtraction

end carry

Chapter03.qxd 2/2/2007 6:16 PM Page 76

EON
PreMedia

CONFIRMING PGS

SECTION 3-3 Fixed-Point Representation 77

There is no end carry

Answer is negative 59282 � 10’s complement of 40718

Since we are dealing with unsigned numbers, there is really no way to
get an unsigned result for the second example. When working with paper and
pencil, we recognize that the answer must be changed to a signed negative
number. When subtracting with complements, the negative answer is recog-
nized by the absence of the end carry and the complemented result.

Subtraction with complements is done with binary numbers in a similar
manner using the same procedure outlined above. Using the two binary
numbers X �1010100 and Y �1000011, we perform the subtraction X �Y and
Y � X using 2’s complements:

X � 1010100
2’s complement of Y � �0111101

Sum � 10010001
Discard end carry 27 ��10000000

Answer: X �Y � 0010001

Y � �000011
2’s complement of X � �0101100

Sum � 1101111

There is no end carry

Answer is negative 0010001 � 2’s complement of 1101111

3-3 Fixed-Point Representation
Positive integers, including zero, can be represented as unsigned numbers.
However, to represent negative integers, we need a notation for negative val-
ues. In ordinary arithmetic, a negative number is indicated by a minus sign and
a positive number by a plus sign. Because of hardware limitations, computers
must represent everything with l’s and 0’s, including the sign of a number. As
a consequence, it is customary to represent the sign with a bit placed in the left-
most position of the number. The convention is to make the sign bit equal to 0
for positive and to 1 for negative.

In addition to the sign, a number may have a binary (or decimal) point.
The position of the binary point is needed to represent fractions, integers,
or mixed integer-fraction numbers. The representation of the binary point
in a register is complicated by the fact that it is characterized by a position
in the register. There are two ways of specifying the position of the binary
point in a register: by giving it a fixed position or by employing a floating-point
representation. The fixed-point method assumes that the binary point is

binary point

Chapter03.qxd 2/2/2007 6:16 PM Page 77

EON
PreMedia

CONFIRMING PGS

78 CHAPTER THREE Data Representation

always fixed in one position. The two positions most widely used are (1) a
binary point in the extreme left of the register to make the stored number a
fraction, and (2) a binary point in the extreme right of the register to make the
stored number an integer. In either case, the binary point is not actually pres-
ent, but its presence is assumed from the fact that the number stored in the reg-
ister is treated as a fraction or as an integer. The floating-point representation
uses a second register to store a number that designates the position of the dec-
imal point in the first register. Floating-point representation is discussed fur-
ther in the next section.

Integer Representation
When an integer binary number is positive, the sign is represented by 0 and
the magnitude by a positive binary number. When the number is negative, the
sign is represented by 1 but the rest of the number may be represented in one
of three possible ways:

1. Signed-magnitude representation
2. Signed-1’s complement representation
3. Signed 2’s complement representation

The signed-magnitude representation of a negative number consists of the
magnitude and a negative sign. In the other two representations, the nega-
tive number is represented in either the l’s or 2’s complement of its positive
value. As an example, consider the signed number 14 stored in an 8-bit reg-
ister. �14 is represented by a sign bit of 0 in the leftmost position followed
by the binary equivalent of 14:00001110. Note that each of the eight bits
of the register must have a value and therefore 0’s must be inserted in the
most significant positions following the sign bit. Although there is only one
way to represent �14, there are three different ways to represent �14 with
eight bits.

In signed-magnitude representation 1 0001110

In signed-1’s complement representation 1 1110001

In signed-2’s complement representation 1 1110010

The signed-magnitude representation of �14 is obtained from �14 by com-
plementing only the sign bit. The signed-1’s complement representation of
�14 is obtained by complementing all the bits of �14, including the sign bit.
The signed-2’s complement representation is obtained by taking the 2’s com-
plement of the positive number, including its sign bit.

The signed-magnitude system is used in ordinary arithmetic but is
awkward when employed in computer arithmetic. Therefore, the signed-
complement is normally used. The l’s complement imposes difficulties because

signed numbers

Chapter03.qxd 2/2/2007 6:16 PM Page 78

EON
PreMedia

CONFIRMING PGS

SECTION 3-3 Fixed-Point Representation 79

it has two representations of 0 (�0 and �0). It is seldom used for arithmetic
operations except in some older computers. The l’s complement is useful as
a logical operation since the change of 1 to 0 or 0 to 1 is equivalent to a log-
ical complement operation. The following discussion of signed binary arith-
metic deals exclusively with the signed-2’s complement representation of
negative numbers.

Arithmetic Addition
The addition of two numbers in the signed-magnitude system follows the rules
of ordinary arithmetic. If the signs are the same, we add the two magnitudes
and give the sum the common sign. If the signs are different, we subtract the
smaller magnitude from the larger and give the result the sign of the larger
magnitude. For example, (�25) � (�37) � �(37 � 25) � �12 and is done by
subtracting the smaller magnitude 25 from the larger magnitude 37 and using
the sign of 37 for the sign of the result. This is a process that requires the com-
parison of the signs and the magnitudes and then performing either addition
or subtraction. (The procedure for adding binary numbers in signed-magni-
tude representation is described in Sec. 10-2.) By contrast, the rule for adding
numbers in the signed-2’s complement system does not require a comparison
or subtraction, only addition and complementation. The procedure is very
simple and can be stated as follows: Add the two numbers, including their sign
bits, and discard any carry out of the sign (leftmost) bit position. Numerical
examples for addition are shown below. Note that negative numbers must ini-
tially be in 2’s complement and that if the sum obtained after the addition is
negative, it is in 2’s complement form.

� 6 00000110 �6 11111010
�13 00001101 �13 00001101
�19 00010011 �7 00000111

� 6 00000110 �6 11111010
�13 11110011 �13 11110011
�7 11111001 �19 11101101

In each of the four cases, the operation performed is always addition, includ-
ing the sign bits. Any carry out of the sign bit position is discarded, and nega-
tive results are automatically in 2’s complement form.

The complement form of representing negative numbers is unfamiliar to
people used to the signed-magnitude system. To determine the value of a neg-
ative number when in signed-2’s complement, it is necessary to convert it to a
positive number to place it in a more familiar form. For example, the signed
binary number 11111001 is negative because the leftmost bit is 1. Its 2’s com-
plement is 00000111, which is the binary equivalent of �7. We therefore rec-
ognize the original negative number to be equal to �7.

2’s complement
addition

Chapter03.qxd 2/2/2007 6:16 PM Page 79

EON
PreMedia

CONFIRMING PGS

80 CHAPTER THREE Data Representation

Arithmetic Subtraction
Subtraction of two signed binary numbers when negative numbers are in 2’s
complement form is very simple and can be stated as follows: Take the 2’s
complement of the subtrahend (including the sign bit) and add it to the minu-
end (including the sign bit). A carry out of the sign bit position is discarded.

This procedure stems from the fact that a subtraction operation can be
changed to an addition operation if the sign of the subtrahend is changed .This
is demonstrated by the following relationship:

(�A) � (�B) � (�A) � (�B)

(�A) � (�B) � (�A) � (�B)

But changing a positive number to a negative number is easily done by tak-
ing its 2’s complement. The reverse is also true because the complement of a
negative number in complement form produces the equivalent positive num-
ber. Consider the subtraction of (�6) � (�13) � �7. In binary with eight bits
this is written as 11111010 � 11110011. The subtraction is changed to addition
by taking the 2’s complement of the subtrahend (�13) to give (�13). In
binary this is 11111010 � 00001101 � 100000111. Removing the end carry,
we obtain the correct answer 00000111 (�7).

It is worth noting that binary numbers in the signed-2’s complement sys-
tem are added and subtracted by the same basic addition and subtraction rules
as unsigned numbers. Therefore, computers need only one common hard-
ware circuit to handle both types of arithmetic. The user or programmer must
interpret the results of such addition or subtraction differently depending on
whether it is assumed that the numbers are signed or unsigned.

Overflow
When two numbers of n digits each are added and the sum occupies n � 1
digits, we say that an overflow occurred. When the addition is performed
with paper and pencil, an overflow is not a problem since there is no limit to
the width of the page to write down the sum. An overflow is a problem in dig-
ital computers because the width of registers is finite. A result that contains
n � 1 bits cannot be accommodated in a register with a standard length of n
bits. For this reason, many computers detect the occurrence of an overflow,
and when it occurs, a corresponding flip-flop is set which can then be checked
by the user.

The detection of an overflow after the addition of two binary numbers
depends on whether the numbers are considered to be signed or unsigned.
When two unsigned numbers are added, an overflow is detected from the
end carry out of the most significant position. In the case of signed num-
bers, the leftmost bit always represents the sign, and negative numbers
are in 2’s complement form. When two signed numbers are added, the

overflow

2’s complement
subtraction

Chapter03.qxd 2/2/2007 6:16 PM Page 80

EON
PreMedia

CONFIRMING PGS

SECTION 3-3 Fixed-Point Representation 81

sign bit is treated as part of the number and the end carry does not indicate
an overflow.

An overflow cannot occur after an addition if one number is positive and
the other is negative, since adding a positive number to a negative number
produces a result that is smaller than the larger of the two original numbers.
An overflow may occur if the two numbers added are both positive or both
negative. To see how this can happen, consider the following example. Two
signed binary numbers, �70 and �80, are stored in two 8-bit registers. The
range of numbers that each register can accommodate is from binary �127 to
binary �128. Since the sum of the two numbers is �150, it exceeds the capac-
ity of the 8-bit register. This is true if the numbers are both positive or both
negative. The two additions in binary are shown below together with the last
two carries.

carries: 0 1 carries: 1 0
�70 0 1000110 �70 1 0111010
�80 0 1010000 �80 1 0110000

�150 1 0010110 �150 0 1101010

Note that the 8-bit result that should have been positive has a negative sign bit
and the 8-bit result that should have been negative has a positive sign bit. If,
however, the carry out of the sign bit position is taken as the sign bit of the
result, the 9-bit answer so obtained will be correct. Since the answer cannot be
accommodated within 8 bits, we say that an overflow occurred.

An overflow condition can be detected by observing the carry into the
sign bit position and the carry out of the sign bit position. If these two carries
are not equal, an overflow condition is produced. This is indicated in the exam-
ples where the two carries are explicitly shown. If the two carries are applied
to an exclusive-OR gate, an overflow will be detected when the output of the
gate is equal to 1.

Decimal Fixed-Point Representation
The representation of decimal numbers in registers is a function of the binary
code used to represent a decimal digit. A 4-bit decimal code requires four flip-
flops for each decimal digit. The representation of 4385 in BCD requires 16
flip-flops, four flip-flops for each digit. The number will be represented in a
register with 16 flip-flops as follows:

0100 0011 1000 0101

By representing numbers in decimal we are wasting a considerable
amount of storage space since the number of bits needed to store a decimal
number in a binary code is greater than the number of bits needed for its
equivalent binary representation. Also, the circuits required to perform decimal

overflow detection

Chapter03.qxd 2/2/2007 6:16 PM Page 81

EON
PreMedia

CONFIRMING PGS

82 CHAPTER THREE Data Representation

arithmetic are more complex. However, there are some advantages in the use
of decimal representation because computer input and output data are gen-
erated by people who use the decimal system. Some applications, such as
business data processing, require small amounts of arithmetic computations
compared to the amount required for input and output of decimal data. For
this reason, some computers and all electronic calculators perform arithmetic
operations directly with the decimal data (in a binary code) and thus elimi-
nate the need for conversion to binary and back to decimal. Some computer
systems have hardware for arithmetic calculations with both binary and dec-
imal data.

The representation of signed decimal numbers in BCD is similar to the
representation of signed numbers in binary. We can either use the familiar
signed-magnitude system or the signed-complement system. The sign of a dec-
imal number is usually represented with four bits to conform with the 4-bit
code of the decimal digits. It is customary to designate a plus with four 0’s and
a minus with the BCD equivalent of 9, which is 1001.

The signed-magnitude system is difficult to use with computers. The
signed-complement system can be either the 9’s or the 10’s complement, but
the 10’s complement is the one most often used. To obtain the 10’s comple-
ment of a BCD number, we first take the 9’s complement and then add one to
the least significant digit. The 9’s complement is calculated from the subtrac-
tion of each digit from 9.

The procedures developed for the signed-2’s complement system apply
also to the signed-10’s complement system for decimal numbers. Addition is
done by adding all digits, including the sign digit, and discarding the end
carry. Obviously, this assumes that all negative numbers are in 10’s comple-
ment form. Consider the addition (�375) � (�240) � �135 done in the
signed-10’s complement system.

0 375 (0000 0011 0111 0101)BCD
� 9 760 (1001 0111 0110 0000)BCD

0 135 (0000 0001 0011 0101)BCD

The 9 in the leftmost position of the second number indicates that the number
is negative. 9760 is the 10’s complement of 0240. The two numbers are added
and the end carry is discarded to obtain �135. Of course, the decimal num-
bers inside the computer must be in BCD, including the sign digits. The addi-
tion is done with BCD adders (see Fig. 10-18).

The subtraction of decimal numbers either unsigned or in the signed-10’s
complement system is the same as in the binary case. Take the 10’s comple-
ment of the subtrahend and add it to the minuend. Many computers have spe-
cial hardware to perform arithmetic calculations directly with decimal numbers
in BCD. The user of the computer can specify by programmed instructions that
the arithmetic operations be performed with decimal numbers directly without
having to convert them to binary.

Chapter03.qxd 2/2/2007 6:16 PM Page 82

EON
PreMedia

CONFIRMING PGS

SECTION 3-4 Floating-Point Representation 83

3-4 Floating-Point Representation
The floating-point representation of a number has two parts. The first part rep-
resents a signed, fixed-point number called the mantissa. The second part desig-
nates the position of the decimal (or binary) point and is called the exponent. The
fixed-point mantissa may be a fraction or an integer. For example, the decimal
number �6132.789 is represented in floating-point with a fraction and an expo-
nent as follows:

Fraction Exponent

�0.6132789 �04

The value of the exponent indicates that the actual position of the decimal
point is four positions to the right of the indicated decimal point in the fraction.
This representation is equivalent to the scientific notation �0.6132789 � 10+4.

Floating-point is always interpreted to represent a number in the follow-
ing form:

m � r e

Only the mantissa m and the exponent e are physically represented in the reg-
ister (including their signs). The radix r and the radix-point position of the
mantissa are always assumed. The circuits that manipulate the floating-point
numbers in registers conform with these two assumptions in order to provide
the correct computational results.

A floating-point binary number is represented in a similar manner
except that it uses base 2 for the exponent. For example, the binary number
�1001.11 is represented with an 8-bit fraction and 6-bit exponent as follows:

Fraction Exponent

01001110 000100

The fraction has a 0 in the leftmost position to denote positive. The binary
point of the fraction follows the sign bit but is not shown in the register. The
exponent has the equivalent binary number �4. The floating-point number is
equivalent to

m � 2e � �(.1001110)2 � 2�4

A floating-point number is said to be normalized if the most significant digit of
the mantissa is nonzero. For example, the decimal number 350 is normalized
but 00035 is not. Regardless of where the position of the radix point is assumed
to be in the mantissa, the number is normalized only if its leftmost digit is
nonzero. For example, the 8-bit binary number 00011010 is not normalized
because of the three leading 0’s. The number can be normalized by shifting it

fraction

normalization

mantissa
exponent

Chapter03.qxd 2/2/2007 6:16 PM Page 83

EON
PreMedia

CONFIRMING PGS

84 CHAPTER THREE Data Representation

three positions to the left and discarding the leading 0’s to obtain 11010000. The
three shifts multiply the number by 23 � 8. To keep the same value for the float-
ing-point number, the exponent must be subtracted by 3. Normalized numbers
provide the maximum possible precision for the floating-point number. A zero
cannot be normalized because it does not have a nonzero digit. It is usually rep-
resented in floating-point by all 0’s in the mantissa and exponent.

Two main standard forms of floating-point numbers are from the follow-
ing organizations that decide standards: ANSI (American National Standards
Institute) and IEEE (Institute of Electrical and Electronic Engineers). The ANSI
32-bit floating-point numbers in byte format with examples are given below:

Byte Format:

Byte 1 Byte 2 Byte 3 Byte 4
SEEEE 		IMMMMMMM MMMMMMMM MMMMMMMM

Exponent Mantissa
Binary Point

S � Sign of Mantissa, E � Exponent Bits in 2’s complement, M � Mantissa Bits

Examples:

13 � 1101 � 0.1101 � 24

� 00000100 11010000 00000000 00000000
�17 � �10001 � �0.10001 � 25

� 10000101 10001000 00000000 00000000
�0.125 � �0.001 � �.1 � 2�2

� 11111110 10000000 00000000 00000000

Arithmetic operations with floating-point numbers are more complicated than
arithmetic operations with fixed-point numbers and their execution takes
longer and requires more complex hardware. However, floating-point
representation is a must for scientific computations because of the scaling prob-
lems involved with fixed-point computations. Many computers and all elec-
tronic calculators have the built-in capability of performing floating-point
arithmetic operations. Computers that do not have hardware for floating-point
computations have a set of subroutines to help the user program scientific prob-
lems with floating-point numbers. Arithmetic operations with floating-point
numbers are discussed in Sec. 10-5.

3-5 Other Binary Codes
In previous sections we introduced the most common types of binary-coded
data found in digital computers. Other binary codes for decimal numbers and

�

Chapter03.qxd 2/2/2007 6:16 PM Page 84

EON
PreMedia

CONFIRMING PGS

SECTION 3-5 Other Binary Codes 85

alphanumeric characters are sometimes used. Digital computers also employ
other binary codes for special applications. A few additional binary codes
encountered in digital computers are presented in this section.

Gray Code
Digital systems can process data in discrete form only. Many physical systems
supply continuous output data. The data must be converted into digital form
before they can be used by a digital computer. Continuous, or analog, infor-
mation is converted into digital form by means of an analog-to-digital con-
verter. The reflected binary or Gray code, shown in Table 3-5, is sometimes
used for the converted digital data. The advantage of the Gray code over
straight binary numbers is that the Gray code changes by only one bit as it
sequences from one number to the next. In other words, the change from any
number to the next in sequence is recognized by a change of only one bit from
0 to 1 or from 1 to 0. A typical application of the Gray code occurs when the
analog data are represented by the continuous change of a shaft position. The
shaft is partitioned into segments with each segment assigned a number. If
adjacent segments are made to correspond to adjacent Gray code numbers,
ambiguity is reduced when the shaft position is in the line that separates any
two segments.

Gray code counters are sometimes used to provide the timing sequences
that control the operations in a digital system. A Gray code counter is a
counter whose flip-flops go through a sequence of states as specified in Table
3-5. Gray code counters remove the ambiguity during the change from one
state of the counter to the next because only one bit can change during the
state transition.

Other Decimal Codes
Binary codes for decimal digits require a minimum of four bits. Numerous dif-
ferent codes can be formulated by arranging four or more bits in 10 distinct
possible combinations. A few possibilities are shown in Table 3-6.

Gray code

TABLE 3-5 4-Bit Gray Code

Binary Decimal Binary Decimal
code equivalent code equivalent

0000 0 1100 8
0001 1 1101 9
0011 2 1111 10
0010 3 1110 11
0110 4 1010 12
0111 5 1011 13
0101 6 1001 14
0100 7 1000 15

Chapter03.qxd 2/2/2007 6:16 PM Page 85

EON
PreMedia

CONFIRMING PGS

86 CHAPTER THREE Data Representation

The BCD (binary-coded decimal) has been introduced before. It uses a
straight assignment of the binary equivalent of the digit. The six unused bit
combinations listed have no meaning when BCD is used, just as the letter H
has no meaning when decimal digit symbols are written down. For example,
saying that 1001 1110 is a decimal number in BCD is like saying that 9H is a
decimal number in the conventional symbol designation. Both cases contain
an invalid symbol and therefore designate a meaningless number.

One disadvantage of using BCD is the difficulty encountered when the
9’s complement of the number is to be computed. On the other hand, the 9’s
complement is easily obtained with the 2421 and the excess-3 codes listed in
Table 3-6. These two codes have a self-complementing property which means
that the 9’s complement of a decimal number, when represented in one of these
codes, is easily obtained by changing 1’s to 0’s and 0’s to 1’s. This property is use-
ful when arithmetic operations are done in signed-complement representation.

The 2421 is an example of a weighted code. In a weighted code, the bits are
multiplied by the weights indicated and the sum of the weighted bits gives the
decimal digit. For example, the bit combination 1101, when weighted by the
respective digits 2421, gives the decimal equivalent of 2 � 1 � 4 � 1 � 2 � 0 �
1 � 1 � 7. The BCD code can be assigned the weights 8421 and for this reason
it is sometimes called the 8421 code.

The excess-3 code is a decimal code that has been used in older com-
puters. This is an unweighted code. Its binary code assignment is obtained
from the corresponding BCD equivalent binary number after the addition of
binary 3 (0011).

TABLE 3-6 Four Different Binary Codes for the Decimal Digit

Decimal BCD Excess-3
digit 8421 2421 Excess-3 gray

0 0000 0000 0011 0010
1 0001 0001 0100 0110
2 0010 0010 0101 0111
3 0011 0011 0110 0101
4 0100 0100 0111 0100
5 0101 1011 1000 1100
6 0110 1100 1001 1101
7 0111 1101 1010 1111
8 1000 1110 1011 1110
9 1001 1111 1100 1010

1010 0101 0000 0000
Unused 1011 0110 0001 0001
bit 1100 0111 0010 0011
combi- 1101 1000 1101 1000
nations 1110 1001 1110 1001

1111 1010 1111 1011

self-complementing

weighted code

excess-3 code

Chapter03.qxd 2/2/2007 6:16 PM Page 86

EON
PreMedia

CONFIRMING PGS

SECTION 3-6 Error Detection Codes 87

From Table 3-5 we note that the Gray code is not suited for a decimal
code if we were to choose the first 10 entries in the table. This is because the
transition from 9 back to 0 involves a change of three bits (from 1101 to 0000).
To overcome this difficulty, we choose the 10 numbers starting from the third
entry 0010 up to the twelfth entry 1010. Now the transition from 1010 to 0010
involves a change of only one bit. Since the code has been shifted up three
numbers, it is called the excess-3 Gray. This code is listed with the other dec-
imal codes in Table 3-6.

Other Alphanumeric Codes
The ASCII code (Table 3-4) is the standard code commonly used for the trans-
mission of binary information. Each character is represented by a 7-bit code and
usually an eighth bit is inserted for parity (see Sec. 3-6). The code consists of 128
characters. Ninety-five characters represent graphic symbols that include upper-
and lowercase letters, numerals zero to nine, punctuation marks, and special
symbols. Twenty-three characters represent format effectors, which are functional
characters for controlling the layout of printing or display devices such as car-
riage return, line feed, horizontal tabulation, and back space. The other 10 char-
acters are used to direct the data communication flow and report its status.

Another alphanumeric (sometimes called alphameric) code used in IBM
equipment is the EBCDIC (Extended BCD Interchange Code). It uses eight
bits for each character (and a ninth bit for parity). EBCDIC has the same char-
acter symbols as ASCII but the bit assignment to characters is different.

When alphanumeric characters are used internally in a computer for
data processing (not for transmission purposes) it is more convenient to use a
6-bit code to represent 64 characters. A 6-bit code can specify the 26 upper-
case letters of the alphabet, numerals zero to nine, and up to 28 special char-
acters. This set of characters is usually sufficient for data-processing purposes.
Using fewer bits to code characters has the advantage of reducing the memory
space needed to store large quantities of alphanumeric data.

3-6 Error Detection Codes
Binary information transmitted through some form of communication
medium is subject to external noise that could change bits from 1 to 0, and
vice versa. Even though the codes presented so far are adequate for the rep-
resentation of the digits and characters, they are very sensitive to transmission
errors. In most practical systems, there is always a finite probability of the
occurrence of a single error. Two types of codes that are used for single error
detection and correction are error detection codes and error correction codes.
An error detection code is a binary code that detects digital errors during
transmission. The detected errors cannot be corrected but their presence is
indicated. The usual procedure is to observe the frequency of errors. If errors

EBCDIC

Chapter03.qxd 2/2/2007 6:16 PM Page 87

EON
PreMedia

CONFIRMING PGS

88 CHAPTER THREE Data Representation

occur infrequently at random, the particular erroneous information is trans-
mitted again. If the error occurs too often, the system is checked for malfunc-
tion. An error-correction code is a binary code that detects and corrects single
bit error occurred during transmission. In general, a code is said to be an
error-correcting code if the correct code word can always be deduced from the
erroneous word. Hamming codes are the popular error-correcting codes for
detecting and correcting single-bit-errors. These codes are useful for the com-
munication system that has no return transmission facility.

The most common error detection code used is the parity bit. A parity
bit is an extra bit included with a binary message to make the total number
of 1’s either odd or even. A message of three bits and two possible parity bits
is shown in Table 3-7. The P (odd) bit is chosen in such a way as to make the
sum of 1’s (in all four bits) odd. The P (even) bit is chosen to make the sum of
all 1’s even. In either case, the sum is taken over the message and the P bit.
In any particular application, one or the other type of parity will be adopted.
The even-parity scheme has the disadvantage of having a bit combination of
all 0’s, while in the odd parity there is always one bit (of the four bits that con-
stitute the message and P) that is 1. Note that the P (odd) is the complement
of the P (even).

During transfer of information from one location to another, the parity bit
is handled as follows. At the sending end, the message (in this case three bits)
is applied to a parity generator, where the required parity bit is generated. The
message, including the parity bit, is transmitted to its destination. At the receiv-
ing end, all the incoming bits (in this case, four) are applied to a parity checker
that checks the proper parity adopted (odd or even). An error is detected if the
checked parity does not conform to the adopted parity. The parity method
detects the presence of one, three, or any odd number of errors. An even num-
ber of errors is not detected.

Parity generator and checker networks are logic circuits constructed with
exclusive-OR functions. This is because, as mentioned in Sec. 1-2, the exclusive-
OR function of three or more variables is by definition an odd function. An odd
function is a logic function whose value is binary 1 if, and only if, an odd

parity generator

parity checker

odd function

TABLE 3-7 Parity Bit Generation

Message
xyz P (odd) P (even)

000 1 0
001 0 1
010 0 1
011 1 0
100 0 1
101 1 0
110 1 0
111 0 1

parity bit

Chapter03.qxd 2/2/2007 6:16 PM Page 88

EON
PreMedia

CONFIRMING PGS

SECTION 3-6 Error Detection Codes 89

number of variables are equal to 1. According to this definition, the P (even)
function is the exclusive-OR of x, y, and z because it is equal to 1 when either
one or all three of the variables are equal to 1 (Table 3-7). The P (odd) function
is the complement of the P (even) function.

As an example, consider a 3-bit message to be transmitted with an odd
parity bit. At the sending end, the odd-parity bit is generated by a parity gen-
erator circuit. As shown in Fig. 3-3, this circuit consists of one exclusive-OR
and one exclusive-NOR gate. Since P (even) is the exclusive-OR of x, y, z, and
P (odd) is the complement of P (even), it is necessary to employ an exclusive-
NOR gate for the needed complementation. The message and the odd-parity
bit are transmitted to their destination where they are applied to a parity
checker. An error has occurred during transmission if the parity of the four bits
received is even, since the binary information transmitted was originally odd.
The output of the parity checker would be 1 when an error occurs, that is,
when the number of l’s in the four inputs is even. Since the exclusive-OR func-
tion of the four inputs is an odd function, we again need to complement the
output by using an exclusive-NOR gate.

It is worth noting that the parity generator can use the same circuit as the
parity checker if the fourth input is permanently held at a logic-0 value. The
advantage of this is that the same circuit can be used for both parity genera-
tion and parity checking.

It is evident from the example above that even-parity generators and
checkers can be implemented with exclusive-OR functions. Odd-parity net-
works need an exclusive-NOR at the output to complement the function.

Source

Parity generator Parity checker

Destination

Error
indication

x x

y

z

y

z

Figure 3-3 Error detection with odd parity bit.

Chapter03.qxd 2/2/2007 6:16 PM Page 89

EON
PreMedia

CONFIRMING PGS

90 CHAPTER THREE Data Representation

3-1. Convert the following binary numbers to decimal: 101110; 1110101; and
110110100.

3-2. Convert the following numbers with the indicated bases to decimal:
(12121)3; (4310)5; (50)7; and (198)12.

3-3. Convert the following decimal numbers to binary: 1231; 673; and 1998.
3-4. Convert the following decimal numbers to the bases indicated.

a. 7562 to octal
b. 1938 to hexadecimal
c. 175 to binary

3-5. Convert the hexadecimal number F3A7C2 to binary and octal.
3-6. What is the radix of the numbers if the solution to the quadratic equation

x2 � 10x � 31 � 0 is x � 5 and x � 8?
3-7. Show the value of all bits of a 12-bit register that hold the number equiva-

lent to decimal 215 in (a) binary; (b) binary-coded octal; (c) binary-coded
hexadecimal; (d) binary-coded decimal (BCD).

3-8. Show the bit configuration of a 24-bit register when its content represents
the decimal equivalent of 295: (a) in binary; (b) in BCD; (c) in ASCII using
eight bits with even parity.

3-9. Write your name in ASCII using an S-bit code with the leftmost bit always
0. Include a space between names and a period after a middle initial.

3-10. Decode the following ASCII code:
1001010 1001111 1001000 1001110 0100000 1000100 1001111 1000101

3-11. Obtain the 9’s complement of the following eight-digit decimal numbers:
12349876; 00980100; 90009951; and 00000000.

3-12. Obtain the 10’s complement of the following six-digit decimal numbers:
123900; 090657; 100000; and 000000.

3-13. Obtain the l’s and 2’s complements of the following eight-digit binary num-
bers: 10101110; 10000001; 10000000; 00000001; and 00000000.

3-14. Perform the subtraction with the following unsigned decimal numbers by
taking the 10’s complement of the subtrahend.
a. 5250 � 1321 b. 1753 � 8640
c. 20 � 100 d. 1200 � 250

3-15. Perform the subtraction with the following unsigned binary numbers by tak-
ing the 2’s complement of the subtrahend.
a. 11010 � 10000 b. 11010 � 1101
c. 100 � 110000 d. 1010100 � 1010100

3-16. Perform the arithmetic operations (�42) � (�13) and (�42) � (�13) in
binary using signed-2’s complement representation for negative numbers.

3-17. Perform the arithmetic operations (�70) � (�80) and (�70) � (�80) with
binary numbers in signed-2’s complement representation. Use eight bits to
accommodate each number together with its sign. Show that overflow

PROBLEMS

Chapter03.qxd 2/2/2007 6:16 PM Page 90

EON
PreMedia

CONFIRMING PGS

SECTION 3-6 Error Detection Codes 91

REFERENCES

occurs in both cases, that the last two carries are unequal, and that there is
a sign reversal.

3-18. Perform the following arithmetic operations with the decimal numbers using
signed-10’s complement representation for negative numbers.
a. (�638) � (�785)
b. (�638) � (�185)

3-19. A 36-bit floating-point binary number has eight bits plus sign for the expo-
nent and 26 bits plus sign for the mantissa. The mantissa is a normalized
fraction. Numbers in the mantissa and exponent are in signed-magnitude
representation. What are the largest and smallest positive quantities that can
be represented, excluding zero?

3-20. Represent the number (�46.5)10 as a floating-point binary number with 24
bits. The normalized fraction mantissa has 16 bits and the exponent has 8 bits.

3-21. The Gray code is sometimes called a reflected code because the bit values
are reflected on both sides of any 2n value. For example, as shown in Table
3-5, the values of the three low-order bits are reflected over a line drawn
between 7 and 8. Using this property of the Gray code, obtain:
a. The Gray code numbers for 16 through 31 as a continuation of Table 3-5.
b. The excess-3 Gray code for decimals 10 to 19 as a continuation of the list

in Table 3-6.
3-22. Represent decimal number 8620 in (a) BCD; (b) excess-3 code; (c) 2421

code; (d) as a binary number.
3-23. List the 10 BCD digits with an even parity in the leftmost position (total of

five bits per digit). Repeat with an odd-parity bit.
3-24. Represent decimal 3984 in the 2421 code of Table 3-6. Complement ail bits

of the coded number and show that the result is the 9’s complement of 3984
in the 2421 code.

3-25. Show that the exclusive-OR function x � A � B � C � D is an odd func-
tion. One way to show this is to obtain the truth table for y � A � B and
for z � C � D and then formulate the truth table for x � y � z. Show that
x � 1 only when the total number of 1’s in A, B, C, and D is odd.

3-26. Derive the circuits for a 3-bit parity generator and 4-bit parity checker using
an even-parity bit. (The circuits of Fig. 3-3 use odd parity.)

1. Hill, F. J., and G. R. Peterson, Introduction to Switching Theory and Logical Design, 3rd
ed. New York: John Wiley, 1981.

2. Langholz, G., J. Francioni, and A. Kandel, Elements of Computer Organization.
Englewood Cliffs, NJ: Prentice Hall, 1989.

3. Lewin, M. H., Logic Design and Computer Organization. Reading, MA: Addison-
Wesley, 1983.

4. Mano, M. M., Digital Design, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1991.

Chapter03.qxd 2/2/2007 6:16 PM Page 91

EON
PreMedia

CONFIRMING PGS

5. Roth, C. H., Fundamentals of Logic Design, 3rd ed. St. Paul, MN: West Publishing, 1985.
6. Sandige, R. S., Modern Digital Design. New York: McGraw-Hill, 1990.
7. Shiva, S. G., Introduction to Logic Design. Glenview, II: Scott, Foresman, 1988.
8. Tomek, I., Introduction to Computer Organization. Rockville, MD: Computer Science

Press, 1981.
9. Wakerly, J. F., Microcomputer Architecture and Programming. New York: John Wiley,

1981.
10. Ward, S. A., and R. H. Halstead, Jr., Computation Structures. Cambridge, MA: MIT

Press, 1990.

92 CHAPTER THREE Data Representation

Chapter03.qxd 2/2/2007 6:16 PM Page 92

EON
PreMedia

CONFIRMING PGS

IN THIS CHAPTER

4-1 Register Transfer Language
4-2 Register Transfer
4-3 Bus and Memory Transfers
4-4 Arithmetic Microoperations
4-5 Logic Microoperations
4-6 Shift Microoperations
4-7 Arithmetic Logic Shift Unit
4-8 Hardware Description Languages

4-1 Register Transfer Language
A digital system is an interconnection of digital hardware modules that
accomplish a specific information-processing task. Digital systems vary in
size and complexity from a few integrated circuits to a complex of intercon-
nected and interacting digital computers. Digital system design invariably
uses a modular approach. The modules are constructed from such digital
components as registers, decoders, arithmetic elements, and control logic.
The various modules are interconnected with common data and control
paths to form a digital computer system.

Digital modules are best defined by the registers they contain and the
operations that are performed on the data stored in them. The operations
executed on data stored in registers are called microoperations. A microop-
eration is an elementary operation performed on the information stored in
one or more registers. The result of the operation may replace the previous
binary information of a register or may be transferred to another register.
Examples of microoperations are shift, count, clear, and load. Some of the
digital components introduced in Chap. 2 are registers that implement

93

C H A P T E R F O U R

Register Transfer
and Microoperations

microoperation

Chapter04.qxd 2/2/2007 6:20 PM Page 93

EON
PreMedia

CONFIRMING PGS

microoperations. For example, a counter with parallel load is capable of per-
forming the microoperations increment and load. A bidirectional shift regis-
ter is capable of performing the shift right and shift left microoperations.

The internal hardware organization of a digital computer is best defined
by specifying:

1. The set of registers it contains and their function.
2. The sequence of microoperations performed on the binary information

stored in the registers.
3. The control that initiates the sequence of microoperations.

It is possible to specify the sequence of microoperations in a computer
by explaining every operation in words, but this procedure usually involves
a lengthy descriptive explanation. It is more convenient to adopt a suitable
symbology to describe the sequence of transfers between registers and the
various arithmetic and logic microoperations associated with the transfers.
The use of symbols instead of a narrative explanation provides an organized
and concise manner for listing the microoperation sequences in registers and
the control functions that initiate them.

The symbolic notation used to describe the microoperation transfers
among registers is called a register transfer language. The term “register trans-
fer” implies the availability of hardware logic circuits that can perform a stated
microoperation and transfer the result of the operation to the same or another
register. The word “language” is borrowed from programmers, who apply this
term to programming languages. A programming language is a procedure for
writing symbols to specify a given computational process. Similarly, a natural
language such as English is a system for writing symbols and combining them
into words and sentences for the purpose of communication between people.
A register transfer language is a system for expressing in symbolic form the
microoperation sequences among the registers of a digital module. It is a con-
venient tool for describing the internal organization of digital computers in
concise and precise manner. It can also be used to facilitate the design process
of digital systems.

The register transfer language adopted here is believed to be as simple
as possible, so it should not take very long to memorize. We will proceed to
define symbols for various types of microoperations, and at the same
time, describe associated hardware that can implement the stated microop-
erations. The symbolic designation introduced in this chapter will be utilized
in subsequent chapters to specify the register transfers, the microoperations,
and the control functions that describe the internal hardware organization
of digital computers. Other symbology in use can easily be learned once
this language has become familiar, for most of the differences between reg-
ister transfer languages consist of variations in detail rather than in overall
purpose.

94 CHAPTER FOUR Register Transfer and Microoperations

register transfer

language

Chapter04.qxd 2/2/2007 6:20 PM Page 94

EON
PreMedia

CONFIRMING PGS

4-2 Register Transfer
Computer registers are designated by capital letters (sometimes followed by
numerals) to denote the function of the register. For example, the register
that holds an address for the memory unit is usually called a memory
address register and is designated by the name MAR . Other designations for
registers are PC (for program counter), IR (for instruction register, and R1
(for processor register). The individual flip-flops in an n-bit register are num-
bered in sequence from 0 through n — 1, starting from 0 in the rightmost
position and increasing the numbers toward the left. Figure 4-1 shows the
representation of registers in block diagram form. The most common way to
represent a register is by a rectangular box with the name of the register
inside, as in Fig. 4-l(a). The individual bits can be distinguished as in (b). The
numbering of bits in a 16-bit register can be marked on top of the box as
shown in (c). A 16-bit register is partitioned into two parts in (d). Bits 0 through
7 are assigned the symbol L (for low byte) and bits 8 through 15 are assigned
the symbol H (for high byte). The name of the 16-bit register is PC. The sym-
bol PC (0–7) or PC (L) refers to the low-order byte and PC (8–15) or PC (H)
to the high-order byte.

Information transfer from one register to another is designated in sym-
bolic form by means of a replacement operator. The statement

R2 ← R1

denotes a transfer of the content of register R1 into register R2. It designates a
replacement of the content of R 2 by the content of R1. By definition, the con-
tent of the source register R1 does not change after the transfer.

A statement that specifies a register transfer implies that circuits are avail-
able from the outputs of the source register to the inputs of the destination reg-
ister and that the destination register has a parallel load capability. Normally,

SECTION 4-2 Register Transfer 95

register transfer

R1 7 6 5 4 3 2 1 0

07815015

R2 PC (H) PC (L)

(a) Register R

(c) Numbering of bits (d) Divided into two parts

(b) Showing individual bits

Figure 4-1 Block diagram of register.

registers

Chapter04.qxd 2/2/2007 6:20 PM Page 95

EON
PreMedia

CONFIRMING PGS

we want the transfer to occur only under a predetermined control condition.
This can be shown by means of an if-then statement.

If (P �1) then (R2 ← R1)

where P is a control signal generated in the control section. It is sometimes
convenient to separate the control variables from the register transfer operation
by specifying a control function. A control function is a Boolean variable that is
equal to 1 or 0. The control function is included in the statement as follows:

P : R2 ← R1

The control condition is terminated with a colon. It symbolizes the require-
ment that the transfer operation be executed by the hardware only if P � 1.

Every statement written in a register transfer notation implies a hardware
construction for implementing the transfer. Figure 4-2 shows the block dia-
gram that depicts the transfer from R1 to R2. The n outputs of register R1 are
connected to the n inputs of register R2. The letter n will be used to indicate
any number of bits for the register. It will be replaced by an actual number
when the length of the register is known. Register R2 has a load input that is
activated by the control variable P. It is assumed that the control variable is
synchronized with the same clock as the one applied to the register. As shown

96 CHAPTER FOUR Register Transfer and Microoperations

control function

Control
circuit

Load

Clock

Load

Transfer occurs here

(b) Timing diagram

Clock

(a) Block diagram

R2

t t �1

n

R1

P

Figure 4-2 Transfer from R1 to R2 when p � 1.

Chapter04.qxd 2/2/2007 6:20 PM Page 96

EON
PreMedia

CONFIRMING PGS

in the timing diagram, P is activated in the control section by the rising edge
of a clock pulse at time t. The next positive transition of the clock at time t �1
finds the load input active and the data inputs of R2 are then loaded into the
register in parallel. P may go back to 0 at time t �1; otherwise, the transfer
will occur with every clock pulse transition while P remains active.

Note that the clock is not included as a variable in the register transfer
statements. It is assumed that all transfers occur during a clock edge transition.
Even though the control condition such as P becomes active just after time t,
the actual transfer does not occur until the register is triggered by the next pos-
itive transition of the clock at time t �1.

The basic symbols of the register transfer notation are listed in Table 4-1.
Registers are denoted by capital letters, and numerals may follow the letters.
Parentheses are used to denote a part of a register by specifying the range
of bits or by giving a symbol name to a portion of a register. The arrow
denotes a transfer of information and the direction of transfer. A comma is used
to separate two or more operations that are executed at the same time.
The statement

T : R2 ← R1, R1 ← R2

denotes an operation that exchanges the contents of two registers during one
common clock pulse provided that T �1. This simultaneous operation is pos-
sible with registers that have edge-triggered flip-flops.

SECTION 4-3 Bus and Memory Transfers 97

common bus

TABLE 4-1 Basic Symbols for Register Transfers

Symbol Description Examples

Letters Denotes a register MAR, R 2
(and numerals)

Parentheses () Denotes a part of a register R2(0–7), R2(L)
Arrow ← Denotes transfer of information R2 ← R1
Comma , Separates two microoperations R2 ← R1, R1 ← R2

4-3 Bus and Memory Transfers
A typical digital computer has many registers, and paths must be provided to
transfer information from one register to another. The number of wires will
be excessive if separate lines are used between each register and all other
registers in the system. A more efficient scheme for transferring information
between registers in a multiple-register configuration is a common bus sys-
tem. A bus structure consists of a set of common lines, one for each bit of a reg-
ister, through which binary information is transferred one at a time. Control

Chapter04.qxd 2/2/2007 6:20 PM Page 97

EON
PreMedia

CONFIRMING PGS

signals determine which register is selected by the bus during each particular
register transfer.

One way of constructing a common bus system is with multiplexers. The
multiplexers select the source register whose binary information is then placed
on the bus. The construction of a bus system for four registers is shown in
Fig. 4-3. Each register has four bits, numbered 0 through 3. The bus consists
of four 4 � 1 multiplexers each having four data inputs, 0 through 3, and two
selection inputs, S1 and S0. In order not to complicate the diagram with 16 lines
crossing each other, we use labels to show the connections from the outputs of
the registers to the inputs of the multiplexers. For example, output 1 of regis-
ter A is connected to input 0 of MUX 1 because this input is labeled A1. The
diagram shows that the bits in the same significant position in each register are
connected to the data inputs of one multiplexer to form one line of the bus.
Thus MUX 0 multiplexes the four 0 bits of the registers, MUX 1 multiplexes
the four 1 bits of the registers, and similarly for the other two bits.

98 CHAPTER FOUR Register Transfer and Microoperations

4-line
common

bus

4 � 1
MUX 0

4 � 1
MUX 1

4 � 1
MUX 2

4 � 1
MUX 3

Register D Register C Register B Register A

3 2 1 0

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

3 2 1 0 3 2 1

B2 B1 B0 A2 A1 A0

D0 C0 B0 A0D1 C1 B1 A1D2 C2 B2 A2

D2

S1

S0

D1 D0 C2 C1 C0

0 3 2 1 0

Figure 4-3 Bus system for four registers.

Chapter04.qxd 2/2/2007 6:20 PM Page 98

EON
PreMedia

CONFIRMING PGS

The two selection lines S1 and S0 are connected to the selection inputs
of all four multiplexers. The selection lines choose the four bits of one regi-
ster and transfer them into the four-line common bus. When S1S0 � 00, the
0 data inputs of all four multiplexers are selected and applied to the outputs
that form the bus. This causes the bus lines to receive the content of regis-
ter A since the outputs of this register are connected to the 0 data inputs of
the multiplexers. Similarly, register B is selected if S1S0 � 01, and so on.
Table 4-2 shows the register that is selected by the bus for each of the four
possible binary value of the selection lines.

SECTION 4-3 Bus and Memory Transfers 99

bus selection

TABLE 4-2 Function Table for Bus of Fig. 4-3

S1 S0 Register selected

0 0 A
0 1 B
1 0 C
1 1 D

In general, a bus system will multiplex k registers of n bits each to pro-
duce an n-line common bus. The number of multiplexers needed to construct
the bus is equal to n, the number of bits in each register. The size of each mul-
tiplexer must be k � 1 since it multiplexes k data lines. For example, a com-
mon bus for eight registers of 16 bits each requires 16 multiplexers, one for
each line in the bus. Each multiplexer must have eight data input lines and
three selection lines to multiplex one significant bit in the eight registers.

The transfer of information from a bus into one of many destination reg-
isters can be accomplished by connecting the bus lines to the inputs of all des-
tination registers and activating the load control of the particular destination
register selected. The symbolic statement for a bus transfer may mention the
bus or its presence may be implied in the statement. When the bus is includes
in the statement, the register transfer is symbolized as follows:

BUS ← C, R1 ← BUS

The content of register C is placed on the bus, and the content of the bus is
loaded into register R1 by activating its load control input. If the bus is known
to exist in the system, it may be convenient just to show the direct transfer.

R1 ← C

From this statement the designer knows which control signals must be acti-
vated to produce the transfer through the bus.

Chapter04.qxd 2/2/2007 6:20 PM Page 99

EON
PreMedia

CONFIRMING PGS

Three-State Bus Buffers
A bus system can be constructed with three-state gates instead of multiplex-
ers. A three-state gate is a digital circuit that exhibits three states. Two of the
states are signals equivalent to logic 1 and 0 as in a conventional gate. The
third state is a high-impedance state. The high-impedance state behaves like an
open circuit, which means that the output is disconnected and does not have
a logic significance. Three-state gates may perform any conventional logic,
such as AND or NAND. However, the one most commonly used in the
design of a bus system is the buffer gate.

The graphic symbol of a three-state buffer gate is shown in Fig. 4-4. It is
distinguished from a normal buffer by having both a normal input and a
control input. The control input determines the output state. When the con-
trol input is equal to 1, the output is enabled and the gate behaves like any
conventional buffer, with the output equal to the normal input. When the con-
trol input is 0, the output is disabled and the gate goes to a high-impedance
state, regardless of the value in the normal input. The high-impedance state
of a three-state gate provides a special feature not available in other gates.
Because of this feature, a large number of three-state gate outputs can be
connected with wires to form a common bus line without endangering load-
ing effects.

The construction of a bus system with three-state buffers is demon-
strated in Fig. 4-5. The outputs of four buffers are connected together to form
a single bus line. (It must be realized that this type of connection cannot be
done with gates that do not have three-state outputs.) The control inputs to the
buffers determine which of the four normal inputs will communicate with the
bus line. No more than one buffer may be in the active state at any given
time. The connected buffers must be controlled so that only one three-state
buffer has access to the bus line while all other buffers are maintained in a
high-impedance state.

One way to ensure that no more than one control input is active at any
given time is to use a decoder, as shown in the diagram. When the enable
input of the decoder is 0, all of its four outputs are 0, and the bus line is in a
high-impedance state because all four buffers are disabled. When the enable
input is active, one of the three-state buffers will be active, depending on the
binary value in the select inputs of the decoder. Careful investigation will
reveal that Fig. 4-5 is another way of constructing a 4 � 1 multiplexer since
the circuit can replace the multiplexer in Fig. 4-3.

100 CHAPTER FOUR Register Transfer and Microoperations

Normal input A Output Y �A if C �1
High-impedance if C �0

Control input C

Figure 4-4 Graphic symbols for three-state buffer.

bus system

three-state gate

high-impedance

buffer

Chapter04.qxd 2/2/2007 6:20 PM Page 100

EON
PreMedia

CONFIRMING PGS

To construct a common bus for four registers of n bits each using three-
state buffers, we need n circuits with four buffers in each as shown in Fig. 4-5.
Each group of four buffers receives one significant bit from the four registers.
Each common output produces one of the lines for the common bus for a total
of n lines. Only one decoder is necessary to select between the four registers.

Memory Transfer
The operation of a memory unit was described in Sec. 2-7. The transfer of
information from a memory word to the outside environment is called a read
operation. The transfer of new information to be stored into the memory is
called a write operation. A memory word will be symbolized by the letter M.
The particular memory word among the many available is selected by the
memory address during the transfer. It is necessary to specify the address of M
when writing memory transfer operations. This will be done by enclosing the
address in square brackets following the letter M.

Consider a memory unit that receives the address from a register, called
the address register, symbolized by AR . The data are transferred to another
register, called the data register, symbolized by DR. The read operation can
be stated as follows:

Read: DR ← M [AR]

This causes a transfer of information into DR from the memory word M
selected by the address in AR .

The write operation transfers the content of a data register to a memory
word M selected by the address. Assume that the input data are in register

SECTION 4-3 Bus and Memory Transfers 101

S1

0

1

2

3

S0

E

D0

C0

B0

A0
Bus line for bit 0

2 � 4
decoder

Select

Enable

Figure 4-5 Bus line with three state-buffers.

memory read

memory write

Chapter04.qxd 2/2/2007 6:20 PM Page 101

EON
PreMedia

CONFIRMING PGS

R1 and the address is in AR . The write operation can be stated symbolically
as follows:

Write: M [AR] ← R1

This causes a transfer of information from R1 into the memory word M
selected by the address in AR.

4-4 Arithmetic Microoperations
A microoperation is an elementary operation performed with the data stored
in registers. The microoperations most often encountered in digital computers
are classified into four categories:

1. Register transfer microoperations transfer binary information from one
register to another.

2. Arithmetic microoperations perform arithmetic operation on numeric
data stored in registers.

3. Logic microoperations perform bit manipulation operations on nonnu-
meric data stored in registers.

4. Shift microoperations perform shift operations on data stored in
registers.

The register transfer microoperation was introduced in Sec. 4-2. This type of
microoperation does not change the information content when the binary
information moves from the source register to the destination register. The
other three types of microoperations change the information content during
the transfer. In this section we introduce a set of arithmetic microoperations.
In the next two sections we present the logic and shift microoperations.

The basic arithmetic microoperations are addition, subtraction, incre-
ment, decrement, and shift. Arithmetic shifts are explained later in conjunc-
tion with the shift microoperations. The arithmetic microoperation defined by
the statement

R3 ← R1 � R2

specifies an add microoperation. It states that the contents of register R1 are
added to the contents of register R2 and the sum transferred to register R3. To
implement this statement with hardware we need three registers and the digi-
tal component that performs the addition operation. The other basic arith-
metic microoperations are listed in Table 4-3. Subtraction is most often

102 CHAPTER FOUR Register Transfer and Microoperations

add
microoperation

Chapter04.qxd 2/2/2007 6:20 PM Page 102

EON
PreMedia

CONFIRMING PGS

implemented through complementation and addition. Instead of using the
minus operator, we can specify the subtraction by the following statement:

R3 ← R1 � R2�
� 1

R2� is the symbol for the 1’s complement of R2. Adding 1 to the 1’s comple-
ment produces the 2’s complement. Adding the contents of R1 to the 2’s com-
plement of R2 is equivalent to R1 � R2.

SECTION 4-4 Arithmetic Microoperations 103

subtract
microoperation

TABLE 4-3 Arithmetic Microoperations

Symbolic
designation Description

R3 ← R1 � R 2 Contents of R1 plus R 2 transferred to R3
R3 ← R1 � R 2 Contents of R1 minus R2 transferred to R3
R 2 ← R2� Complement the contents of R2 (1’s complement)
R 2 ← R2�

� 1 2’s complement the contents of R 2 (negate)
R3 ← R1 � R2�

� 1 R1 plus the 2’s complement of R 2 (subtraction)
R1 ← R1 � 1 Increment the contents of R1 by one
R1 ← R1 � 1 Decrement the contents of R1 by one

The increment and decrement microoperations are symbolized by plus-
one and minus-one operations, respectively. These microoperations are imple-
mented with a combinational circuit or with a binary up-down counter.

The arithmetic operations of multiply and divide are not listed in Table
4-3. These two operations are valid arithmetic operations but are not included
in the basic set of microoperations. The only place where these operations can
be considered as microoperations is in a digital system, where they are imple-
mented by means of a combinational circuit. In such a case, the signals that
perform these operations propagate through gates, and the result of the oper-
ation can be transferred into a destination register by a clock pulse as soon as
the output signal propagates through the combinational circuit. In most com-
puters, the multiplication operation is implemented with a sequence of add
and shift microoperations. Division is implemented with a sequence of sub-
tract and shift microoperations. To specify the hardware in such a case requires
a list of statements that use the basic microoperations of add, subtract, and
shift (see Chapter 10).

Binary Adder
To implement the add microoperation with hardware, we need the registers
that hold the data and the digital component that performs the arithmetic
addition. The digital circuit that forms the arithmetic sum of two bits and a
previous carry is called a full-adder (see Fig. 1-17). The digital circuit that

Chapter04.qxd 2/2/2007 6:20 PM Page 103

EON
PreMedia

CONFIRMING PGS

generates the arithmetic sum of two binary numbers of any length is called
a binary adder. The binary adder is constructed with full-adder circuits con-
nected in cascade, with the output carry from one full-adder connected to the
input carry of the next full-adder. Figure 4-6 shows the interconnections of
four full-adders (FA) to provide a 4-bit binary adder. The augend bits of A and
the addend bits of B are designated by subscript numbers from right to left,
with subscript 0 denoting the low-order bit. The carries are connected in a
chain through the full-adders. The input carry to the binary adder is C0 and
the output carry is C4. The S outputs of the full-adders generate the required
sum bits.

An n-bit binary adder requires n full-adders. The output carry from each
full-adder is connected to the input carry of the next-high-order full-adder.
The n data bits for the A inputs come from one register (such as R1), and the
n data bits for the B inputs come from another register (such as R2). The sum
can be transferred to a third register or to one of the source registers (R1 or
R 2), replacing its previous content.

Binary Adder-Subtractor
The subtraction of binary numbers can be done most conveniently by means
of complements as discussed in Sec. 3-2. Remember that the subtraction A � B
can be done by taking the 2’s complement of B and adding it to A. The 2’s
complement can be obtained by taking the 1’s complement and adding one to
the least significant pair of bits. The 1’s complement can be implemented with
inverters and a one can be added to the sum through the input carry.

The addition and subtraction operations can be combined into one com-
mon circuit by including an exclusive-OR gate with each full-adder. A 4-bit
adder-subtractor circuit is shown in Fig. 4-7. The mode input M controls the
operation. When M � 0 the circuit is an adder and when M � 1 the circuit
becomes a subtractor. Each exclusive-OR gate receives input M and one of the
inputs of B. When M � 0, we have B � 0 � B. The full-adders receive the
value of B, the input carry is 0, and the circuit performs A plus B. When M � 1,
we have B � 1 � B � and C0 � 1. The B inputs are all complemented and a 1 is
added through the input carry. The circuit performs the operation A plus the

104 CHAPTER FOUR Register Transfer and Microoperations

adder-subtractor

B3 A3 B2 A2 B1 A1 B0 A0

C0C1C2C3

C4 S3

FA FA FA FA

S2 S1 S0

Figure 4-6 4-bit binary adder.

binary adder

full-adder

Chapter04.qxd 2/2/2007 6:20 PM Page 104

EON
PreMedia

CONFIRMING PGS

2’s complement of B. For unsigned numbers, this gives A � B if A � B or the
2’s complement of (B � A) if A � B. For signed numbers, the result is A � B
provided that there is no overflow.

Binary Incrementer
The increment microoperation adds one to a number in a register. For exam-
ple, if a 4-bit register has a binary value 0110, it will go to 0111 after it is incre-
mented. This microoperation is easily implemented with a binary counter (see
Fig. 2-10). Every time the count enable is active, the clock pulse transition
increments the content of the register by one. There may be occasions when
the increment microoperation must be done with a combinational circuit inde-
pendent of a particular register. This can be accomplished by means of half-
adders (see Fig. 1-16) connected in cascade.

The diagram of a 4-bit combinational circuit incrementer is shown in
Fig. 4-8. One of the inputs to the least significant half-adder (HA) is connected
to logic-1 and the other input is connected to the least significant bit of the num-
ber to be incremented. The output carry from one half-adder is connected to
one of the inputs of the next-higher-order half-adder. The circuit receives the
four bits from A0 through A3, adds one to it, and generates the incremented out-
put in S0 through S3. The output carry C4 will be 1 only after incrementing
binary 1111. This also causes outputs S0 through S3 to go to 0.

The circuit of Fig. 4-8 can be extended to an n-bit binary incrementer by
extending the diagram to include n half-adders. The least significant bit must
have one input connected to logic-1. The other inputs receive the number to
be incremented or the carry from the previous stage.

SECTION 4-4 Arithmetic Microoperations 105

C4 S3 S2 S1 S0

C0C1C2C3

B3 A3 B2 A2 B1 A1 B0 A0

M

FAFA FA FA

Figure 4-7 4-bit adder-subtractor.

incrementer

Chapter04.qxd 2/2/2007 6:20 PM Page 105

EON
PreMedia

CONFIRMING PGS

106 CHAPTER FOUR Register Transfer and Microoperations

A3

C4 S3 S2 S1 S0

SC

x y

A2 A1 A0 1

HA

SC

x y

HA

SC

x y

HA

SC

x y

HA

Figure 4-8 4-bit binary incrementer.

input carry

Arithmetic Circuit
The arithmetic microoperations listed in Table 4-3 can be implemented in one
composite arithmetic circuit. The basic component of an arithmetic circuit is
the parallel adder. By controlling the data inputs to the adder, it is possible to
obtain different types of arithmetic operations.

The diagram of a 4-bit arithmetic circuit is shown in Fig. 4-9. It has four
full-adder circuits that constitute the 4-bit adder and four multiplexers for
choosing different operations. There are two 4-bit inputs A and B and a 4-bit
output D. The four inputs from A go directly to the X inputs of the binary
adder. Each of the four inputs from B are connected to the data inputs of the
multiplexers. The multiplexers data inputs also receive the complement of B.
The other two data inputs are connected to logic-0 and logic-1. Logic-0 is a
fixed voltage value (0 volts for TTL integrated circuits) and the logic-1 signal
can be generated through an inverter whose input is 0. The four multiplexers
are controlled by two selection inputs, S1 and S0. The input carry C in goes to
the carry input of the FA in the least significant position. The other carries a
connected from one stage to the next.

The output of the binary adder is calculated from the following arith-
metic sum:

D � A � Y � C in

where A is the 4-bit binary number at the X inputs and Y is the 4-bit binary
number at the Y inputs of the binary adder. C in is the input carry, which can
be equal to 0 or 1. Note that the symbol � in the equation above denotes an
arithmetic plus. By controlling the value of Y with the two selection inputs S1
and S0 and making C in equal to 0 or 1, it is possible to generate the eight arith-
metic microoperations listed in Table 4-4.

arithmetic circuit

Chapter04.qxd 2/2/2007 6:20 PM Page 106

EON
PreMedia

CONFIRMING PGS

SECTION 4-4 Arithmetic Microoperations 107

C in
S1
S0

A0

B0

A1

B1

A2

B2

A3

B3

S1
S0

0 1

0
1
2
3

S1
S0

0
1
2
3

S1
S0

0
1
2
3

4�1
M UX

4�1
M UX

FA

FA

FA

4�1
M UX

S1

X0 C0

D0

D1

D2

D3

Cout

C1Y0

X1 C1

C2Y1

X2 C2

C3Y2

X3 C3

C4Y3

S0

0
1
2
3

4�1
M UX

FA

Figure 4-9 4-bit arithmetic circuit.

Chapter04.qxd 2/2/2007 6:20 PM Page 107

EON
PreMedia

CONFIRMING PGS

When S1S0 � 00, the value of B is applied to the Y inputs of the adder. If
Cin � 0, the output D � A � B. If C in � 1, output D � A � B � 1. Both cases
perform the add microoperation with or without adding the input carry.

When S1S0 � 01, the complement of B is applied to the Y inputs of the
adder. If C in � 1, then D � A � B— � 1. This produces A plus the 2’s comple-
ment of B, which is equivalent to a subtraction of A � B. When C in � 0, then
D � A � B—. This is equivalent to a subtract with borrow, that is, A � B — 1.

When S1S0 � 10, the inputs from B are neglected, and instead, all 0’s are
inserted into the Y inputs. The output becomes D � A � 0 � C in. This gives
D � A when C in � 0 and D � A � 1 when C in � 1. In the first case we have a
direct transfer from input A to output D. In the second case, the value of A is
incremented by 1.

When S1S 0 � 11, all 1’s are inserted into the Y inputs of the adder to
produce the decrement operation D � A � 1 when C in � 0. This is because
a number with all 1’s is equal to the 2’s complement of 1 (the 2’s complement
of binary 0001 is 1111). Adding a number A to the 2’s complement of 1 pro-
duces F � A � 2’s complement of 1 � A � 1. When C in � 1, then D � A � 1 �
1 � A, which causes a direct transfer from input A to output D. Note that the
microoperation D � A is generated twice, so there are only seven distinct
microoperations in the arithmetic circuit.

4-5 Logic Microoperations
Logic microoperations specify binary operations for strings of bits stored in
registers. These operations consider each bit of the register separately and
treat them as binary variables. For example, the exclusive-OR microoperation
with the contents of two registers R1 and R 2 is symbolized by the statement

P : R1 ← R1 � R 2

108 CHAPTER FOUR Register Transfer and Microoperations

TABLE 4-4 Arithmetic Circuit Function Table

Select
Input Output

S1 S0 C in Y D � A � Y � C in Microoperation

0 0 0 B D � A � B Add
0 0 1 B D � A � B � 1 Add with carry
0 1 0 B— D � A � B— Subtract with borrow
0 1 1 B— D � A � B— � 1 Subtract
1 0 0 0 D � A Transfer A
1 0 1 0 D � A � 1 Increment A
1 1 0 1 D � A � 1 Decrement A
1 1 1 1 D � A Transfer A

increment

decrement

addition

subtraction

Chapter04.qxd 2/2/2007 6:20 PM Page 108

EON
PreMedia

CONFIRMING PGS

It specifies a logic microoperation to be executed on the individual bits of the
registers provided that the control variable P � 1. As a numerical example,
assume that each register has four bits. Let the content of R1 be 1010 and the
content of R2 be 1100. The exclusive-OR microoperation stated above sym-
bolizes the following logic computation:

1010 Content of R1
1100 Content of R 2
0110 Content of R1 after P � 1

The content of R1, after the execution of the microoperation, is equal to the
bit-by-bit exclusive-OR operation on pairs of bits in R 2 and previous values
of R1. The logic microoperations are seldom used in scientific computations,
but they are very useful for bit manipulation of binary data and for making
logical decisions.

Special symbols will be adopted for the logic microoperations OR,
AND, and complement, to distinguish them from the corresponding symbols
used to express Boolean functions. The symbol � will be used to denote an
OR microoperation and the symbol � to denote an AND microoperation.
The complement microoperation is the same as the 1’s complement and uses
a bar on top of the symbol that denotes the register name. By using different
symbols, it will be possible to differentiate between a logic microoperation and
a control (or Boolean) function. Another reason for adopting two sets of sym-
bols is to be able to distinguish the symbol �, when used to symbolize an
arithmetic plus, from a logic OR operation. Although the � symbol has two
meanings, it will be possible to distinguish between them by noting where the
symbol occurs. When the symbol � occurs in a microoperation, it will denote
an arithmetic plus. When it occurs in a control (or Boolean) function, it will
denote an OR operation. We will never use it to symbolize an OR microop-
eration. For example, in the statement

P � Q : R1 ← R 2 � R 3, R 4 ← R 5 � R 6

the � between P and Q is an OR operation between two binary variables of a
control function. The � between R 2 and R 3 specifies an add microoperation.
The OR microoperation is designated by the symbol � between registers R 5
and R6.

List of Logic Microoperations
There are 16 different logic operations that can be performed with two binary
variables. They can be determined from all possible truth tables obtained with
two binary variables as shown in Table 4-5. In this table, each of the 16
columns F0 through F15 represents a truth table of one possible Boolean

SECTION 4-5 Logic Microoperations 109

special symbols

Chapter04.qxd 2/2/2007 6:20 PM Page 109

EON
PreMedia

CONFIRMING PGS

110 CHAPTER FOUR Register Transfer and Microoperations

TABLE 4-6 Sixteen Logic Microoperations

Boolean function Microoperation Name

F0 � 0 F ← 0 Clear
F1 � xy F ← Α � B AND
F2 � xy � F ← Α � B

—

F3 � x F ← Α Transfer A
F4 � x�y F ← A

—
� B

F5 � y F ← B Transfer B
F6 � x � y F ← Α � B Exclusive-OR
F7 � x � y F ← Α � B OR
F8 � (x � y)� F ← Α � B NOR
F9 � (x � y)� F ← Α � B Exclusive-NOR
F10 � y� F ← B

—
Complement B

F11 � x � y� F ← Α � B
—

F12 � x� F ← A
—

Complement A
F13 � x� � y F ← A

—
� B

F14 � (xy)� F ← Α � B NAND
F15 � 1 F ← all 1’s Set to all 1’s

function for the two variables x and y. Note that the functions are determined
from the 16 binary combinations that can be assigned to F.

The 16 Boolean functions of two variables x and y are expressed in alge-
braic form in the first column of Table 4-6. The 16 logic microoperations are
derived from these functions by replacing variable x by the binary content of
register A and variable y by the binary content of register B. It is important to
realize that the Boolean functions listed in the first column of Table 4-6 repre-
sent a relationship between two binary variables x and y. The logic microop-
erations listed in the second column represent a relationship between the
binary content of two registers A and B. Each bit of the register is treated as a
binary variable and the microoperation is performed on the string of bits
stored in the registers.

TABLE 4-5 Truth Tables for 16 Functions of Two Variables

x y F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Chapter04.qxd 2/2/2007 6:20 PM Page 110

EON
PreMedia

CONFIRMING PGS

Hardware Implementation
The hardware implementation of logic microoperations requires that logic
gates be inserted for each bit or pair of bits in the registers to perform the
required logic function. Although there are 16 logic microoperations, most
computers use only four—AND, OR, XOR (exclusive-OR), and complement—
from which all others can be derived.

Figure 4-10 shows one stage of a circuit that generates the four basic logic
microoperations. It consists of four gates and a multiplexer. Each of the four
logic operations is generated through a gate that performs the required logic.
The outputs of the gates are applied to the data inputs of the multiplexer. The
two selection inputs S1 and S0 choose one of the data inputs of the multiplexer
and direct its value to the output. The diagram shows one typical stage with sub-
script i. For a logic circuit with n bits, the diagram must be repeated n times for
i � 0, 1, 2, . . . , n � 1. The selection variables are applied to all stages. The func-
tion table in Fig. 4-10(b) lists the logic microoperations obtained for each com-
bination of the selection variables.

Some Applications
Logic microoperations are very useful for manipulating individual bits or a
portion of a word stored in a register. They can be used to change bit values,
delete a group of bits, or insert new bit values into a register. The following
examples show how the bits of one register (designated by A) are manipulated

SECTION 4-5 Logic Microoperations 111

E �A �B

S1

S0

Ai
Bi S1

Ei

S0

E �A ∧ B

E �A ∨B

E �A

0

1

2

3

Output

4 � 1
MUX

Operation

0 AND

OR

XOR

Complement

(b) Functional table
(a) Logic diagram

0

0 1

1 0

1 1
�

Figure 4-10 One stage of logic circuit.

logic circuit

Chapter04.qxd 2/2/2007 6:20 PM Page 111

EON
PreMedia

CONFIRMING PGS

by logic microoperations as a function of the bits of another register (desig-
nated by B). In a typical application, register A is a processor register and the
bits of register B constitute a logic operand extracted from memory and placed
in register B.

The selective-set operation sets to 1 the bits in register A where there are
corresponding 1’s in register B. It does not affect bit positions that have 0’s in
B. The following numerical example clarifies this operation:

1010 A before
1100 B (logic operand)
1110 A after

The two leftmost bits of B are 1’s, so the corresponding bits of A are set to 1.
One of these two bits was already set and the other has been changed from
0 to 1. The two bits of A with corresponding 0’s in B remain unchanged. The
example above serves as a truth table since it has all four possible combinations
of two binary variables. From the truth table we note that the bits of A after the
operation are obtained from the logic-OR operation of bits in B and previous
values of A. Therefore, the OR microoperation can be used to selectively set
bits of a register.

The selective-complement operation complements bits in A where there are
corresponding 1’s in B. It does not affect bit positions that have 0’s in B. For
example:

1010 A before
1100 B (logic operand)
0110 A after

Again the two leftmost bits of B are 1’s, so the corresponding bits of A are com-
plemented. This example again can serve as a truth table from which one can
deduce that the selective-complement operation is just an exclusive-OR
microoperation. Therefore, the exclusive-OR microoperation can be used to
selectively complement bits of a register.

The selective-clear operation clears to 0 the bits in A only where there are
corresponding 1’s in B. For example:

1010 A before
1100 B (logic operand)
0010 A after

Again the two leftmost bits of B are 1’s, so the corresponding bits of A are
cleared to 0. One can deduce that the Boolean operation performed on the
individual bits is AB�. The corresponding logic microoperation is

A ← A � B—

112 CHAPTER FOUR Register Transfer and Microoperations

selective-
complement

selective-clear

selective-set

Chapter04.qxd 2/2/2007 6:20 PM Page 112

EON
PreMedia

CONFIRMING PGS

The mask operation is similar to the selective-clear operation except
that the bits of A are cleared only where there are corresponding 0’s in B.
The mask operation is an AND micro operation as seen from the following
numerical example:

1010 A before
1100 B (logic operand)
1000 A after masking

The two rightmost bits of A are cleared because the corresponding bits of B
are 0’s. The two leftmost bits are left unchanged because the corresponding
bits of B are 1’s. The mask operation is more convenient to use than the
selective-clear operation because most computers provide an AND instruc-
tion, and few provide an instruction that executes the microoperation for
selective-clear.

The insert operation inserts a new value into a group of bits. This is done
by first masking the bits and then ORing them with the required value. For
example, suppose that an A register contains eight bits, 0110 1010. To replace
the four leftmost bits by the value 1001 we first mask the four unwanted bits:

0110 1010 A before
0000 1111 B (mask)
0000 1010 A after masking

and then insert the new value:

0000 1010 A before
1001 0000 B (insert)
1001 1010 A after insertion

The mask operation is an AND microoperation and the insert operation is an
OR microoperation.

The clear operation compares the words in A and B and produces an all 0’s
result if the two numbers are equal. This operation is achieved by an exclusive-
OR microoperation as shown by the following example:

1010 A
1010 B
0000 A ← A � B

When A and B are equal, the two corresponding bits are either both 0 or both 1.
In either case the exclusive-OR operation produces a 0. The all-0’s result is
then checked to determine if the two numbers were equal.

SECTION 4-5 Logic Microoperations 113

Chapter04.qxd 2/2/2007 6:20 PM Page 113

EON
PreMedia

CONFIRMING PGS

4-6 Shift Microoperations
Shift microoperations are used for serial transfer of data. They are also used in
conjunction with arithmetic, logic, and other data-processing operations. The
contents of a register can be shifted to the left or the right. At the same time
that the bits are shifted, the first flip-flop receives its binary information from
the serial input. During a shift-left operation the serial input transfers a bit into
the rightmost position. During a shift-right operation the serial input transfers
a bit into the leftmost position. The information transferred through the serial
input determines the type of shift. There are three types of shifts: logical, cir-
cular, and arithmetic.

A logical shift is one that transfers 0 through the serial input. We will adopt,
the symbols shl and shr for logical shift-left and shift-right microoperations. For
example:

R1 ← shl R1
R 2 ← shr R 2

are two microoperations that specify a 1-bit shift to the left of the content of
register R1 and a 1-bit shift to the right of the content of register R2. The regis-
ter symbol must be the same on both sides of the arrow. The bit transferred to
the end position through the serial input is assumed to be 0 during a logical shift.

The circular shift (also known as a rotate operation) circulates the bits of
the register around the two ends without loss of information. This is accom-
plished by connecting the serial output of the shift register to its serial input.
We will use the symbols cil and cir for the circular shift left and right,
respectively. The symbolic notation for the shift microoperations is shown in
Table 4-7.

114 CHAPTER FOUR Register Transfer and Microoperations

TABLE 4-7 Shift Microoperations

Symbolic designation Description

R ← shl R Shift-left register R
R ← shrR Shift-right register R
R ← cil R Circular shift-left register R
R ← cir R Circular shift-right register R
R ← ashl R Arithmetic shift-left R
R ← ashr R Arithmetic shift-right R

An arithmetic shift is a microoperation that shifts a signed binary number
to the left or right. An arithmetic shift-left multiplies a signed binary number
by 2. An arithmetic shift-right divides the number by 2. Arithmetic shifts must
leave the sign bit unchanged because the sign of the number remains the same

circular shift

arithmetic shift

logical shift

Chapter04.qxd 2/2/2007 6:20 PM Page 114

EON
PreMedia

CONFIRMING PGS

when it is multiplied or divided by 2. The leftmost bit in a register holds the
sign bit, and the remaining bits hold the number. The sign bit is 0 for positive
and 1 for negative. Negative numbers are in 2’s complement form. Figure 4-11
shows a typical register of n bits. Bit Rn�1 in the leftmost position holds the sign
bit. R n �2 is the most significant bit of the number and R 0 is the least significant
bit. The arithmetic shift-right leaves the sign bit unchanged and shifts the num-
ber (including the sign bit) to the right. Thus R n �1 remains the same, R n �2
receives the bit from R n �1, and so on for the other bits in the register. The bit
in R0 is lost.

The arithmetic shift-left inserts a 0 into R0, and shifts all other bits to the
left. The initial bit of Rn �1 is lost and replaced by the bit from Rn �2. A sign
reversal occurs if the bit in Rn �1 changes in value after the shift. This happens
if the multiplication by 2 causes an overflow. An overflow occurs after an
arithmetic shift left if initially, before the shift, Rn �1 is not equal to R n �2. An
overflow flip-flop Vs can be used to detect an arithmetic shift-left overflow.

Vs � Rn �1 � Rn�2

If Vs � 0, there is no overflow, but if Vs � 1, there is an overflow and a sign
reversal after the shift. Vs must be transferred into the overflow flip-flop with
the same clock pulse that shifts the register.

Hardware Implementation
A possible choice for a shift unit would be a bidirectional shift register with par-
allel load (see Fig. 2-9). Information can be transferred to the register in parallel
and then shifted to the right or left. In this type of configuration, a clock pulse is
needed for loading the data into the register, and another pulse is needed to ini-
tiate the shift. In a processor unit with many registers it is more efficient to
implement the shift operation with a combinational circuit. In this way the con-
tent of a register that has to be shifted is first placed onto a common bus whose
output is connected to the combinational shifter, and the shifted number is then
loaded back into the register. This requires only one clock pulse for loading the
shifted value into the register.

A combinational circuit shifter can be constructed with multiplexers as
shown in Fig. 4-12. The 4-bit shifter has four data inputs, A0 through A3, and
four data outputs, H0 through H3. There are two serial inputs, one for shift left

SECTION 4-6 Shift Microoperations 115

Rn�1 Rn�2 R1 R0

Sign
bit

Figure 4-11 Arithmetic shift right.

shifter

Chapter04.qxd 2/2/2007 6:20 PM Page 115

EON
PreMedia

CONFIRMING PGS

(IL) and the other for shift right (IL). When the selection input S � 0, the input
data are shifted right (down in the diagram). When S � 1, the input data are
shifted left (up in the diagram). The function table in Fig. 4-12 shows which
input goes to each output after the shift. A shifter with n data inputs and out-
puts requires n multiplexers. The two serial inputs can be controlled by
another multiplexer to provide the three possible types of shifts.

4-7 Arithmetic Logic Shift Unit
Instead of having individual registers performing the microoperations directly,
computer systems employ a number of storage registers connected to a
common operational unit called an arithmetic logic unit, abbreviated ALU. To

116 CHAPTER FOUR Register Transfer and Microoperations

ALU

Select

Serial
input (IR)

Serial
input (IL)

0 for shift right (down)
1 for shift left (up)

H0

H1

A0

A1

A2

A3

S

0
1

MUX

S

0
1

MUX

S

0
1

MUX

S

0
1

MUX

H2

H3

Functional table

Select Output

S H0 H1 H2 H2

0 IR A0 A1 A2

1 A1 A2 A3 IL

Figure 4-12 4-bit combinational circuit shifter.

Chapter04.qxd 2/2/2007 6:20 PM Page 116

EON
PreMedia

CONFIRMING PGS

perform a microoperation, the contents of specified registers are placed in the
inputs of the common ALU. The ALU performs an operation and the result
of the operation is then transferred to a destination register. The ALU is a
combinational circuit so that the entire register transfer operation from the
source registers through the ALU and into the destination register can be per-
formed during one clock pulse period. The shift microoperations are often
performed in a separate unit, but sometimes the shift unit is made part of the
overall ALU.

The arithmetic, logic, and shift circuits introduced in previous sections
can be combined into one ALU with common selection variables. One stage
of an arithmetic logic shift unit is shown in Fig. 4-13. The subscript i designates
a typical stage. Inputs Ai and Bi are applied to both the arithmetic and logic

SECTION 4-7 Arithmetic Logic Shift Unit 117

Ci

S3

S2

S1

S0

F i

B i

Ai

Ai �1

Ai �1

Di

Ei

shr

shl

Ci � 1

One stage of
arithmetic

circuit
(Fig 4-9)

One stage of
logic circuit
(Fig 4-10)

4 � 1
MUX

Select

0
1
2
3

Figure 4-13 One stage of arithmetic logic shift unit.

Chapter04.qxd 2/2/2007 6:20 PM Page 117

EON
PreMedia

CONFIRMING PGS

units. A particular microoperation is selected with inputs S1 and S0. A 4 � 1
multiplexer at the output chooses between an arithmetic output in E i and
a logic output in Hi. The data in the multiplexer are selected with inputs S3 and
S2. The other two data inputs to the multiplexer receive inputs Ai �1 for the
shift-right operation and Ai �1 for the shift-left operation. Note that the diagram
shows just one typical stage. The circuit of Fig. 4-13 must be repeated n times
for an n-bit ALU. The output carry Ci �1 of a given arithmetic stage must be
connected to the input carry Ci of the next stage in sequence. The input carry
to the first stage is the input carry C in, which provides a selection variable for
the arithmetic operations.

The circuit whose one stage is specified in Fig. 4-13 provides eight arith-
metic operation, four logic operations, and two shift operations. Each opera-
tion is selected with the five variables S3, S2, S1, S0, and Cin. The input carry Cin
is used for selecting an arithmetic operation only.

Table 4-8 lists the 14 operations of the ALU. The first eight are arithmetic
operations (see Table 4-4) and are selected with S3S2 � 00. The next four are
logic operations (see Fig. 4-10) and are selected with S3S2 � 01. The input carry
has no effect during the logic operations and is marked with don’t-care �’s.
The last two operations are shift operations and are selected with S3S2 � 10
and 11. The other three selection inputs have no effect on the shift.

118 CHAPTER FOUR Register Transfer and Microoperations

TABLE 4-8 Function Table for Arithmetic Logic Shift Unit

Operation select

S3 S2 S1 S0 C in Operation Function

0 0 0 0 0 F � A Transfer A
0 0 0 0 1 F � A � 1 Increment A
0 0 0 1 0 F � A � B Addition
0 0 0 1 1 F � A � B � 1 Add with carry
0 0 1 0 0 F � A � B— Subtract with borrow
0 0 1 0 1 F � A � B— � 1 Subtraction
0 0 1 1 0 F � A � 1 Decrement A
0 0 1 1 1 F � A Transfer A
0 1 0 0 � F � A � B AND
0 1 0 1 � F � A � B OR
0 1 1 0 � F � A � B XOR
0 1 1 1 � F � A— Complement A
1 0 � � � F � shr A Shift right A into F
1 1 � � � F = shl A Shift left A into F

4-8 Hardware Description Languages
The design of complex digital systems at the gate and flip-flop level is a
tedious and time consuming process. Digital systems can be described at the
register transfer level by means of hardware description language (HDL). The

Chapter04.qxd 2/2/2007 6:20 PM Page 118

EON
PreMedia

CONFIRMING PGS

HDL is a viable solution for designing and debugging a digital system at a
higher level before conversion to the gate and flip-flop level. To do this con-
version, computer-aided design (CAD) tools can be used. This is similar to
converting a high-level language program into machine-level language using
compiler. Popular HDLs are VHSIC HDL or VHDL and verilog HDL. The
acronym VHSIC stands for very high speed integrated circuit. HDLs can
describe the digital circuits systems operation, its design, and tests to verify its
operation using simulation.

Introduction to VHDL
VHDL is an industry standard for the description, modeling, and synthesis of
digital circuits and systems. Logic synthesis is a process by which an abstract
form of desired circuit behavior or model is turned into a design implementa-
tion in terms of logic gates. One of the nicest features of this language is that
it does not depend on a specific programmable logic devices, PLA (program-
mable logic array), or FPGA (field programmable gate array) for its develop-
ment. Instead, a VHDL description can be placed in libraries to be used over
and over again as technology develops. Another nice aspect of the VHDL lan-
guage is that it is similar in syntax to object-oriented languages such as C��.
But remember, it is not a programming language as we use it. It is a hardware
description language.

Basic Framework and Syntax
On the most basic level, the description of a logical block, is split into two
parts, the ENTITY and the ARCHITECTURE. The ENTITY declaration is
much like a declaration of a function in C��. In this case the ENTITY dec-
laration tells us that we have a device called compare8. It does not tell us how
compare8 actually functions. . . this is left to the ARCHITECTURE section.
For example, to describe an 8-bit comparator, two 8-bit inputs, and a 1-bit out-
put are required

1 ENTITY compare8 IS PORT(
2 x, y: IN std_logic_vector(7 DOWNTO 0) ;
3 res: OUT std_logic);
4 END compare8;

The first line tells us what we are describing, in this case the name of the entity
is compare8. The word PORT followed by a parenthesis tells us that the follow-
ing information describes the I/O behavior of this entity. Line 2 begins the actual
description of our inputs. In this case we are using x and y as inputs and declar-
ing them to be vectors of 8-bits, with bit 7 being the most significant and bit 0 the
least. Line three describes our output. For a comparison, we need to know only
if the values are equal or not equal. We therefore only need a single bit as the out-
put. The final line tells us that we are at the end of the description for the entity
called compare8.

SECTION 4-8 Hardware Description Languages 119

Chapter04.qxd 2/2/2007 6:20 PM Page 119

EON
PreMedia

CONFIRMING PGS

120 CHAPTER FOUR Register Transfer and Microoperations

The ARCHITECTURE statement is like the actual function in C��, it
describes the logic behind the entity. For the case of the comparator, we want
to return a 1 if the two values are equal and a 0 if they are not:

1 ARCHITECTURE struct OF compare8 IS
2 BEGIN
3 res �� ‘1’ WHEN (x � y) ELSE ‘0’;
4 END struct;

The first line tells us that the architecture name of the entity compare8 is
struct. This is important because an entity may have several different archi-
tectures, perhaps with various levels of detail in their descriptions. For our
purposes, however, we will usually only write one architecture. The BEGIN
statement tells us that you are beginning your description of the logic. In
some cases you may declare types beforehand in which case it would not be
the first statement, but we will touch upon that later in this tutorial. Line 3 is
the meat of this section, and reads just as it is written: the value 1 will be
placed in res when the values of x and y are equal, otherwise it will return a
0. The �� is an assignment operator and can be used only when writing to
an output value, variables use a different assignment operator that will be dis-
cussed later. The final line tells us that we have completed our description of
the architecture struct.

Now even with these 8 lines of code, there is still something missing that
will make this a complete program. That is the following:

library ieee;
use ieee.std_logic_1164.all;

These must be the first two lines of every ENTITY because it tells the com-
piler that you are using the standard IEEE library and that the signal types
that you are declaring in the entity can be found in ieee.std_logic_1164.all (this
is where it recognizes what std_logic_vector() and std_logic mean). Thus a
complete description of an 8-bit comparator would be:

library ieee;
use ieee.std_logic_1164.all;
ENTITY compare8 IS PORT(

x, y: ;IN std_logic_vector(7 DOWNTO 0);
res: ;OUT std_logic);

END compare8;

ARCHITECTURE struct OF compare8 IS
BEGIN

res � � ‘1’ WHEN (x � y) ELSE ‘0’;
END struct;

Chapter04.qxd 2/2/2007 6:20 PM Page 120

EON
PreMedia

CONFIRMING PGS

SECTION 4-8 Hardware Description Languages 121

PROBLEMS

4-1. Show the block diagram of the hardware (similar to Fig. 4-2a) that imple-
ments the following register transfer statement:

yT2: R2 ← R1, R1 ← R2

4-2. The outputs of four registers, R0, R1, R 2, and R3, are connected through
4-to-l-line multiplexers to the inputs of a fifth register, R5. Each register is
eight bits long. The required transfers are dictated by four timing variables
T0 through T3 as follows:

T0: R 5 ← R 0
T1: R 5 ← R1
T2: R 5 ← R 2
T3: R 5 ← R 3

The timing variables are mutually exclusive, which means that only one
variable is equal to 1 at any given time, while the other three are equal 0.
Draw a block diagram showing the hardware implementation of the regis-
ter transfers. Include the connections necessary from the four timing vari-
ables to the selection inputs of the multiplexers and to the load input of
register R 5.

4-3. Represent the following conditional control statement by two register trans-
fer statements with control functions.

If (P � 1) then (R1 ← R 2) else if (Q � 1) then (R1 ← R3)

4-4. What has to be done to the bus system of Fig. 4-3 to be able to transfer infor-
mation from any register to any other register? Specifically, show the con-
nections that must be included to provide a path from the outputs of register
C to the inputs of register A.

4-5. Draw a diagram of a bus system similar to the one shown in Fig. 4-3, but use
three-state buffers and a decoder instead of the multiplexers.

4-6. A digital computer has a common bus system for 16 registers of 32 bits each.
The bus is constructed with multiplexers.
a. How many selection inputs are there in each multiplexer?
b. What size of multiplexers are needed?
c. How many multiplexers are there in the bus?

4-7. The following transfer statements specify a memory. Explain the memory
operation in each case.
a. R 2 ← M [AR]
b. M [AR] ← R 3
c. R 5 ← M [R5]

Chapter04.qxd 2/2/2007 6:20 PM Page 121

EON
PreMedia

CONFIRMING PGS

4-8. Draw the block diagram for the hardware that implements the following
statements:

x � yz : AR ← AR � BR

where AR and BR are two n-bit registers and x, y, and z are control vari-
ables. Include the logic gates for the control function. (Remember that the
symbol � designates an OR operation in a control or Boolean function but
that it represents an arithmetic plus in a microoperation.)

4-9. Show the hardware that implements the following statement. Include the
logic gates for the control function and a block diagram for the binary
counter with a count enable input.

xyT0 � T1 � y�T2: AR ← AR � 1

4-10. Consider the following register transfer statements for two 4-bit registers R1
and R2.

xT : R1 ← R1 � R 2

x�T : R1 ← R 2

Every time that variable T � 1, either the content of R2 is added to the con-
tent of R1 if x � 1, or the content of R2 is transferred to R1 if x � 0. Draw a
diagram showing the hardware implementation of the two statements. Use
block diagrams for the two 4-bit registers, a 4-bit adder, and a quadruple 2-
to-l-line multiplexer that selects the inputs to R1. In the diagram, show how
the control variables x and T select the inputs of the multiplexer and the load
input of register R1.

4-11. Using a 4-bit counter with parallel load as in Fig. 2-11 and a 4-bit adder as
in Fig. 4-6, draw a block diagram that shows how to implement the follow-
ing statements:

x: R1 ← R1 � R2 Add R2 to R1

x�y: R1 ← R1 � 1 Increment R1

where R1 is a counter with parallel load and R 2 is a 4-bit register.
4-12. The adder-subtractor circuit of Fig. 4-7 has the following values for input

mode M and data inputs A and B. In each case, determine the values of the
outputs: S3, S2, S1, S 0, and C4.

M A B

a. 0 0111 0110
b. 0 1000 1001
c. 1 1100 1000
d. 1 0101 1010
e. 1 0000 0001

122 CHAPTER FOUR Register Transfer and Microoperations

Chapter04.qxd 2/2/2007 6:20 PM Page 122

EON
PreMedia

CONFIRMING PGS

SECTION 4-8 Hardware Description Languages 123

4-13. Design a 4-bit combinational circuit decrementer using four full-adder cir-
cuits.

4-14. Assume that the 4-bit arithmetic circuit of Fig. 4-9 is enclosed in one IC pack-
age. Show the connections among two such ICs to form an 8-bit arithmetic
circuit.

4-15. Design an arithmetic circuit with one selection variable S and two n-bit data
inputs A and B. The circuit generates the following four arithmetic opera-
tions in conjunction with the input carry Cin. Draw the logic diagram for the
first two stages.

4-16. Derive a combinational circuit that selects and generates any of the 16 logic
functions listed in Table 4-5.

4-17. Design a digital circuit that performs the four logic operations of exclusive-
OR, exclusive-NOR, NOR, and NAND. Use two selection variables. Show
the logic diagram of one typical stage.

4-18. Register A holds the 8-bit binary 11011001. Determine the B operand
and the logic microoperation to be performed in order to change the value
in A to:
a. 01101101
b. 11111101

4-19. The 8-bit registers AR, BR, CR, and DR initially have the following values:

AR � 11110010
BR � 11111111
CR � 10111001
DR � 11101010

Determine the 8-bit values in each register after the execution of the fol-
lowing sequence of microoperations.

AR ← AR � BR Add BR to AR
CR ← CR � DR, BR ← BR � 1 AND DR to CR, increment BR
AR ← AR � CR Subtract CR from AR

4-20. An 8-bit register contains the binary value 10011100. What is the register
value after an arithmetic shift right? Starting from the initial number
10011100, determine the register value after an arithmetic shift left, and state
whether there is an overflow.

4-21. Starting from an initial value of R � 11011101, determine the sequence of
binary values in R after a logical shift-left, followed by a circular shift-right,
followed by a logical shift-right and a circular shift-left.

S C in � 0 C in � 1

0 D � A � B (add) D � A � 1 (increment)
1 D � A � 1 (decrement) D � A � B

—
� 1 (subtract)

Chapter04.qxd 2/2/2007 6:20 PM Page 123

EON
PreMedia

CONFIRMING PGS

124 CHAPTER FOUR Register Transfer and Microoperations

1. Bell, C. G., J. C. Mudge, and J. E. McNamara, Computer Engineering. Bedford,
MA: Digital Press, 1980.

2. Booth, T. L., Introduction to Computer Engineering, 3rd ed. New York: John Wiley,
1984.

3. Hays, J. F., Computer Architecture and Organization, 2nd ed. New York: McGraw-
Hill, 1988.

4. Hill, F. J., and G. R. Peterson, Digital Systems: Hardware Organization and Design, 3rd
ed. New York: John Wiley, 1987.

5. Mano, M. M., Computer Engineering: Hardware Design. Englewood Cliffs, NJ:
Prentice Hall, 1988.

6. Patterson, D. A., and J. L. Hennessy, Computer Architecture: A Quantitative Approach.
San Mateo, CA: Morgan Kaufmann Publishers, 1990.

7. Prosser, F. P., and D. E. Winkel, The Art of Digital Design, 2nd ed. Englewood Cliffs,
NJ: Prentice Hall, 1987.

8. Sandige, R. S., Modern Digital Design. New York: McGraw-Hill, 1990.
9. Shiva, S. G., Computer Design and Architecture, 2nd ed. New York: HarperCollins

Publishers, 1991.
10. Tomek, I., Introduction to Computer Organization. Rockville, MD: Computer Science

Press, 1981.
11. Ward, S. A., and R. H. Halstead, Jr., Computation Structures. Cambridge, MA: MIT

Press, 1990.

REFERENCES

4-22. What is the value of output H in Fig. 4-12 if input A is 1001, S � 1, IR � 1,
and IL � 0?

4-23. What is wrong with the following register transfer statements?
a. xT : AR ← AR——, AR ← 0
b. yT : R1 ← R 2, R1 ← R3
c. zT : PC ← AR, PC ← PC � 1

Chapter04.qxd 2/2/2007 6:20 PM Page 124

EON
PreMedia

CONFIRMING PGS

IN THIS CHAPTER

5-1 Instruction Codes
5-2 Computer Registers
5-3 Computer Instructions
5-4 Timing and Control
5-5 Instruction Cycle
5-6 Memory-Reference Instructions
5-7 Input–Output and Interrupt
5-8 Complete Computer Description
5-9 Design of Basic Computer
5-10 Design of Accumulator Logic

5-1 Instruction Codes
In this chapter we introduce a basic computer and show how its operation
can be specified with register transfer statements. The organization of the
computer is defined by its internal registers, the riming and control struc-
ture, and the set of instructions that it uses. The design of the computer is
then carried out in detail. Although the basic computer presented in this
chapter is very small compared to commercial computers, it has the advan-
tage of being simple enough so we can demonstrate the design process with-
out too many complications.

The internal organization of a digital system is defined by the sequence
of microoperations it performs on data stored in its registers. The general-
purpose digital computer is capable of executing various microoperations and,
in addition, can be instructed as to what specific sequence of operations it must
perform. The user of a computer can control the process by means of a
program. A program is a set of instructions that specify the operations,

125

C H A P T E R F I V E

Basic Computer
Organization
and Design

Chapter05.qxd 2/2/2007 6:25 PM Page 125

EON
PreMedia

CONFIRMING PGS

operands, and the sequence by which processing has to occur. The data-
processing task may be altered by specifying a new program with different
instructions or specifying the same instructions with different data.

A computer instruction is a binary code that specifies a sequence of
microoperations for the computer. Instruction codes together with data are
stored in memory. The computer reads each instruction from memory and
places it in a control register. The control then interprets the binary code of
the instruction and proceeds to execute it by issuing a sequence of microop-
erations. Every computer has its own unique instruction set. The ability to
store and execute instructions, the stored program concept, is the most
important property of a general-purpose computer.

An instruction code is a group of bits that instruct the computer to
perform a specific operation. It is usually divided into parts, each having its
own particular interpretation. The most basic part of an instruction code is its
operation part. The operation code of an instruction is a group of bits that
define such operations as add, subtract, multiply, shift, and complement. The
number of bits required for the operation code of an instruction depends on
the total number of operations available in the computer. The operation code
must consist of at least n bits for a given 2n (or less) distinct operations. As an
illustration, consider a computer with 64 distinct operations, one of them
being an ADD operation. The operation code consists of six bits, with a bit
configuration 110010 assigned to the ADD operation. When this operation
code is decoded in the control unit, the computer issues control signals to
read an operand from memory and add the operand to a processor register.

At this point we must recognize the relationship between a computer
operation and a microoperation. An operation is part of an instruction stored
in computer memory. It is a binary code that tells the computer to perform a
specific operation. The control unit receives the instruction from memory and
interprets the operation code bits. It then issues a sequence of control signals
to initiate microoperations in internal computer registers. For every operation
code, the control issues a sequence of microoperations needed for the hard-
ware implementation of the specified operation. For this reason, an opera-
tion code is sometimes called a macrooperation because it specifies a set of
micro-operations.

The operation part of an instruction code specifies the operation to be
performed. This operation must be performed on some data stored in proces-
sor registers or in memory. An instruction code must therefore specify not
only the operation but also the registers or the memory words where the
operands are to be found, as well as the register or memory word where the
result is to be stored. Memory words can be specified in instruction codes by
their address. Processor registers can be specified by assigning to the instruc-
tion another binary code of k bits that specifies one of 2k registers. There are
many variations for arranging the binary code of instructions, and each com-
puter has its own particular instruction code format. Instruction code formats

126 CHAPTER FIVE Basic Computer Organization and Design

instruction code

operation code

Chapter05.qxd 2/2/2007 6:25 PM Page 126

EON
PreMedia

CONFIRMING PGS

are conceived by computer designers who specify the architecture of the com-
puter. In this chapter we choose a particular instruction code to explain the
basic organization and design of digital computers.

Stored Program Organization
The simplest way to organize a computer is to have one processor register and
an instruction code format with two parts. The first part specifies the operation
to be performed and the second specifies an address. The memory address
tells the control where to find an operand in memory. This operand is read
from memory and used as the data to be operated on together with the data
stored in the processor register.

Figure 5-1 depicts this type of organization. Instructions are stored in one
section of memory and data in another. For a memory unit with 4096 words
we need 12 bits to specify an address since 212 � 4096. If we store each instruc-
tion code in one 16-bit memory word, we have available four bits for the oper-
ation code (abbreviated opcode) to specify one out of 16 possible operations,
and 12 bits to specify the address of an operand. The control reads a 16-bit
instruction from the program portion of memory. It uses the 12-bit address
part of the instruction to read a 16-bit operand from the data portion of
memory. It then executes the operation specified by the operation code.

SECTION 5-1 Instruction Codes 127

opcode

Opcode Address Instructions
(program)

Memory
4096 � 16

Operands
(data)

Processor register
(accumulator or AC)

Instruction format

Binary operand
15

15 12 11 0

0

Figure 5-1 Stored program organization.

Chapter05.qxd 2/2/2007 6:25 PM Page 127

EON
PreMedia

CONFIRMING PGS

Computers that have a single-processor register usually assign to it the name
accumulator and label it AC. The operation is performed with the memory
operand and the content of AC.

If an operation in an instruction code does not need an operand from
memory, the rest of the bits in the instruction can be used for other purposes.
For example, operations such as clear AC, complement AC, and increment
AC operate on data stored in the AC register. They do not need an operand
from memory. For these types of operations, the second part of the instruc-
tion code (bits 0 through 11) is not needed for specifying a memory address
and can be used to specify other operations for the computer.

Indirect Address
It is sometimes convenient to use the address bits of an instruction code not as
an address but as the actual operand. When the second part of an instruction
code specifies an operand, the instruction is said to have an immediate
operand. When the second part specifies the address of an operand, the
instruction is said to have a direct address. This is in contrast to a third possi-
bility called indirect address, where the bits in the second part of the instruc-
tion designate an address of a memory word in which the address of the
operand is found. One bit of the instruction code can be used to distinguish
between a direct and an indirect address.

As an illustration of this configuration, consider the instruction code
format shown in Fig. 5-2(a). It consists of a 3-bit operation code, a 12-bit
address, and an indirect address mode bit designated by I. The mode bit is 0
for a direct address and 1 for an indirect address. A direct address instruction
is shown in Fig. 5-2(b). It is placed in address 22 in memory. The I bit is 0,
so the instruction is recognized as a direct address instruction. The opcode
specifies an ADD instruction, and the address part is the binary equivalent of
457. The control finds the operand in memory at address 457 and adds it to
the content of AC. The instruction in address 35 shown in Fig. 5-2(c) has a
mode bit I � 1. Therefore, it is recognized as an indirect address instruction.
The address part is the binary equivalent of 300. The control goes to address
300 to find the address of the operand. The address of the operand in this
case is 1350. The operand found in address 1350 is then added to the content
of AC. The indirect address instruction needs two references to memory to
fetch an operand. The first reference is needed to read the address of the
operand; the second is for the operand itself. We define the effective address to
be the address of the operand in a computation-type instruction or the target
address in a branch-type instruction. Thus the effective address in the instruc-
tion of Fig. 5-2(b) is 457 and in the instruction of Fig 5-2(c) is 1350.

The direct and indirect addressing modes are used in the computer pre-
sented in this chapter. The memory word that holds the address of the
operand in an indirect address instruction is used as a pointer to an array of

128 CHAPTER FIVE Basic Computer Organization and Design

accumulator (AC)

immediate
instruction

effective address

Chapter05.qxd 2/2/2007 6:25 PM Page 128

EON
PreMedia

CONFIRMING PGS

data. The pointer could be placed in a processor register instead of memory
as done in commercial computers.

5-2 Computer Registers
Computer instructions are normally stored in consecutive memory locations
and are executed sequentially one at a time. The control reads an instruction
from a specific address in memory and executes it. It then continues by reading
the next instruction in sequence and executes it, and so on. This type of instruc-
tion sequencing needs a counter to calculate the address of the next instruction
after execution of the current instruction is completed. It is also necessary to pro-
vide a register in the control unit for storing the instruction code after it is read

SECTION 5-2 Computer Registers 129

15

I Opcode Address

(a) Instruction format

14 12 11 0

0 ADD

AC

Memory

45722

457 Operand

(b) Direct address (c) Indirect address

�

1 ADD

AC

Memory

30035

300

1350 Operand

�

1350

Figure 5-2 Demonstration of direct and indirect address.

Chapter05.qxd 2/2/2007 6:25 PM Page 129

EON
PreMedia

CONFIRMING PGS

from memory. The computer needs processor registers for manipulating data
and a register for holding a memory address. These requirements dictate the
register configuration shown in Fig. 5-3. The registers are also listed in Table 5-1
together with a brief description of their function and the number of bits that
they contain.

The memory unit has a capacity of 4096 words and each word contains
16 bits. Twelve bits of an instruction word are needed to specify the address
of an operand. This leaves three bits for the operation, part of the instruction
and a bit to specify a direct or indirect address. The data register (DR) holds
the operand read from memory. The accumulator (AC) register is a general-
purpose processing register. The instruction read from memory is placed in
the instruction register (IR). The temporary register (TR) is used for holding
temporary data during the processing.

130 CHAPTER FIVE Basic Computer Organization and Design

program
counter (PC)

TABLE 5-1 List of Registers for the Basic Computer

Register Number
symbol of bits Register name Function

DR 16 Data register Holds memory operand
AR 12 Address register Holds address for memory
AC 16 Accumulator Processor register
IR 16 Instruction register Holds instruction code
PC 12 Program counter Holds address of instruction
TR 16 Temporary register Holds temporary data
INPR 8 Input register Holds input character
OUTR 8 Output register Holds output character

The memory address register (AR) has 12 bits since this is the width of a
memory address. The program counter (PC) also has 12 bits and it holds the
address of the next instruction to be read from memory after the current
instruction is executed. The PC goes through a counting sequence and causes
the computer to read sequential instructions previously stored in memory.
Instruction words are read and executed in sequence unless a branch instruc-
tion is encountered. A branch instruction calls for a transfer to a nonconsecu-
tive instruction in the program. The address part of a branch instruction is
transferred to PC to become the address of the next instruction. To read an
instruction, the content of PC is taken as the address for memory and a mem-
ory read cycle is initiated. PC is then incremented by one, so it holds the
address of the next instruction in sequence.

Two registers are used for input and output. The input register (INPR)
receives an 8-bit character from an input device. The output register (OUTR)
holds an 8-bit character for an output device.

Chapter05.qxd 2/2/2007 6:25 PM Page 130

EON
PreMedia

CONFIRMING PGS

Common Bus System
The basic computer has eight registers, a memory unit, and a control unit (to
be presented in Sec. 5-4). Paths must be provided to transfer information from
one register to another and between memory and registers. The number of
wires will be excessive if connections are made between the outputs of each
register and the inputs of the other registers. A more efficient scheme for trans-
ferring information in a system with many registers is to use a common bus.
We have shown in Sec. 4-3 how to construct a bus system using multiplexers
or three-state buffer gates. The connection of the registers and memory of the
basic computer to a common bus system is shown in Fig. 5-4.

The outputs of seven registers and memory are connected to the com-
mon bus. The specific output that is selected for the bus lines at any given time
is determined from the binary value of the selection variables S2, S1, and S0.
The number along each output shows the decimal equivalent of the required
binary selection. For example, the number along the output of DR is 3. The
16-bit outputs of DR are placed on the bus lines when S2S1S0 � 011 since this
is the binary value of decimal 3. The lines from the common bus are con-
nected to the inputs of each register and the data inputs of the memory. The
particular register whose LD (load) input is enabled receives the data from the
bus during the next clock pulse transition. The memory receives the contents
of the bus when its write input is activated. The memory places its 16-bit out-
put onto the bus when the read input is activated and S2S1S0 � 111.

SECTION 5-2 Computer Registers 131

load (LD)

11 0

PC

AR

IR

TR

OUTR INPR AC

DR

Memory
4096 words

16 bits per word

11 0

15 0

15 0 15 0

15 07 0 7 0

Figure 5-3 Basic computer registers and memory.

Chapter05.qxd 2/2/2007 6:25 PM Page 131

EON
PreMedia

CONFIRMING PGS

132

16-bit common bus

LD

LD

LD

INR CLR

LD

Adder
and
logic

INR CLR

LD INR CLR

LD INR CLR

LD

Write

Memory unit
4096 � 16

Bus

7

1

2

3

4

5

6

Read

Address

INR CLR

OUTR

TR

IR

INPR

AC

E

DR

PC

AR

Clock

S0

S1

S2

Chapter05.qxd 2/2/2007 6:25 PM Page 132

EON
PreMedia

CONFIRMING PGS

Four registers, DR , AC, IR , and TR , have 16 bits each. Two registers, AR
and PC, have 12 bits each since they hold a memory address. When the con-
tents of AR or PC are applied to the 16-bit common bus, the four most signif-
icant bits are set to 0’s. When AR or PC receive information from the bus, only
the 12 least significant bits are transferred into the register.

The input register INPR and the output register OUTR have 8 bits each
and communicate with the eight least significant bits in the bus. INPR is con-
nected to provide information to the bus but OUTR can only receive infor-
mation from the bus. This is because INPR receives a character from an input
device which is then transferred to AC. OUTR receives a character from AC
and delivers it to an output device. There is no transfer from OUTR to any of
the other registers.

The 16 lines of the common bus receive information from six registers
and the memory unit. The bus lines are connected to the inputs of six regis-
ters and the memory. Five registers have three control inputs: LD (load), INR
(increment), and CLR (clear). This type of register is equivalent to a binary
counter with parallel load and synchronous clear similar to the one shown in
Fig. 2-11. The increment operation is achieved by enabling the count input of
the counter. Two registers have only a LD input. This type of register is shown
in Fig. 2-7.

The input data and output data of the memory are connected to the com-
mon bus, but the memory address is connected to AR. Therefore, AR must
always be used to specify a memory address. By using a single register for the
address, we eliminate the need for an address bus that would have been
needed otherwise. The content of any register can be specified for the mem-
ory data input during a write operation. Similarly, any register can receive the
data from memory after a read operation except AC.

The 16 inputs of AC come from an adder and logic circuit. This circuit
has three sets of inputs. One set of 16-bit inputs come from the outputs of AC.
They are used to implement register microoperations such as complement AC
and shift AC. Another set of 16-bit inputs come from the data regisler DR. The
inputs from DR and AC are used for arithmetic and logic microoperations,
such as add DR to AC or AND DR to AC. The result of an addition is trans-
ferred to AC and the end carry-out of the addition is transferred to flip-flop
E (extended AC bit). A third set of 8-bit inputs come from the input register
INPR. The operation of INPR and OUTR is explained in Sec. 5-7.

Note that the content of any register can be applied onto the bus and an
operation can be performed in the adder and logic circuit during the same
clock cycle. The clock transition at the end of the cycle transfers the content
of the bus into the designated destination register and the output of the adder
and logic circuit into AC. For example, the two microoperations

DR ← AC and AC ← DR

can be executed at the same time. This can be done by placing the content of
AC on the bus (with S2S1S0 � 100), enabling the LD (load) input of DR ,

SECTION 5-2 Computer Registers 133

memory address

Chapter05.qxd 2/2/2007 6:25 PM Page 133

EON
PreMedia

CONFIRMING PGS

transferring the content of DR through the adder and logic circuit into AC, and
enabling the LD (load) input of AC, all during the same clock cycle. The two
transfers occur upon the arrival of the clock pulse transition at the end of the
clock cycle.

5-3 Computer Instructions
The basic computer has three instruction code formats, as shown in Fig. 5-5.
Each format has 16 bits. The operation code (opcode) part of the instruction
contains three bits and the meaning of the remaining 13 bits depends on the
operation code encountered. A memory-reference instruction uses 12 bits to
specify an address and one bit to specify the addressing mode I. I is equal to
0 for direct address and to 1 for indirect address (see Fig. 5-2). The register-
reference instructions are recognized by the operation code 111 with a 0 in the
leftmost bit (bit 15) of the instruction. A register-reference instruction specifies
an operation on or a test of the AC register. An operand from memory is not
needed; therefore, the other 12 bits are used to specify the operation or test to
be executed. Similarly, an input–output instruction does not need a reference
to memory and is recognized by the operation code 111 with a 1 in the left-
most bit of the instruction. The remaining 12 bits are used to specify the type
of input–output operation or test performed.

The type of instruction is recognized by the computer control from the
four bits in positions 12 through 15 of the instruction. If the three opcode bits
in positions 12 though 14 are not equal to 111, the instruction is a memory-
reference type and the bit in position 15 is taken as the addressing mode I. If
the 3-bit opcode is equal to 111, control then inspects the bit in position 15. If

134 CHAPTER FIVE Basic Computer Organization and Design

Instruction format

15 14 12 11 0

1 Opcode Address

0 1 1 1 Register operation

1 1 1 1 I/0 operation

(Opcode = 000 through 110)

(Opcode = 111, I = 0)

(Opcode = 111, I = 1)

(a) Memory – reference instruction

(b) Register – reference instruction

(c) Input – output instruction

15 12 11 0

15 12 11 0

Figure 5-5 Basic computer instruction formats.

Chapter05.qxd 2/2/2007 6:25 PM Page 134

EON
PreMedia

CONFIRMING PGS

this bit is 0, the instruction is a register-reference type. If the bit is 1, the
instruction is an input–output type. Note that the bit in position 15 of the
instruction code is designated by the symbol I but is not used as a mode bit
when the operation code is equal to 111.

Only three bits of the instruction are used for the operation code. It may
seem that the computer is restricted to a maximum of eight distinct operations.
However, since register-reference and input–output instructions use the
remaining 12 bits as part of the operation code, the total number of instruc-
tions can exceed eight. In fact, the total number of instructions chosen for the
basic computer is equal to 25.

The instructions for the computer are listed in Table 5-2. The symbol
designation is a three-letter word and represents an abbreviation intended for

SECTION 5-3 Computer Instructions 135

TABLE 5-2 Basic Computer Instructions

Hexadecimal code

Symbol I �� 0 I �� 1 Description

AND 0xxx 8xxx AND memory word to AC
ADD lxxx 9xxx Add memory word to AC
LDA 2xxx Axxx Load memory word to AC
STA 3xxx Bxxx Store content of AC in memory
BUN 4xxx Cxxx Branch unconditionally
BSA 5xxx Dxxx Branch and save return address
ISZ 6xxx Exxx Increment and skip if zero

CLA 7800 Clear AC
CLE 7400 Clear E
CMA 7200 Complement AC
CME 7100 Complement E
CIR 7080 Circulate right AC and E
CIL 7040 Circulate left AC and E
INC 7020 Increment AC
SPA 7010 Skip next instruction if AC positive
SNA 7008 Skip next instruction if AC negative
SZA 7004 Skip next instruction if AC zero
SZE 7002 Skip next instruction if E is 0
HLT 7001 Halt computer

INP F800 Input character to AC
OUT F400 Output character from AC
SKI F200 Skip on input flag
SKO F100 Skip on output flag
ION F080 Interrupt on
IOF F040 Interrupt off

Chapter05.qxd 2/2/2007 6:25 PM Page 135

EON
PreMedia

CONFIRMING PGS

programmers and users. The hexadecimal code is equal to the equivalent
hexadecimal number of the binary code used for the instruction. By using the
hexadecimal equivalent we reduced the 16 bits of an instruction code to four
digits with each hexadecimal digit being equivalent to four bits. A memory-
reference instruction has an address part of 12 bits. The address part is
denoted by three x’s and stand for the three hexadecimal digits corresponding
to the 12-bit address. The last bit of the instruction is designated by the sym-
bol I. When I � 0, the last four bits of an instruction have a hexadecimal digit
equivalent from 0 to 6 since the last bit is 0. When I � 1, the hexadecimal digit
equivalent of the last four bits of the instruction ranges from 8 to E since the
last bit is 1.

Register-reference instructions use 16 bits to specify an operation. The
leftmost four bits are always 0111, which is equivalent to hexadecimal 7. The
other three hexadecimal digits give the binar) equivalent of the remaining 12
bits. The input–output instructions also use all 16 bits to specify an operation.
The last four bits are always 1111, equivalent to hexadecimal F.

Instruction Set Completeness
Before investigating the operations performed by the instructions, let us dis-
cuss the type of instructions that must be included in a computer. A computer
should have a set of instructions so that the user can construct machine lan-
guage programs to evaluate any function that is known to be computable. The
set of instructions are said to be complete if the computer includes a sufficient
number of instructions in each of the following categories:

1. Arithmetic, logical, and shift instructions
2. Instructions for moving information to and from memory and processor

registers
3. Program control instructions together with instructions that check

status conditions
4. Input and output instructions

Arithmetic, logical, and shift instructions provide computational capabil-
ities for processing the type of data that the user may wish to employ. The bulk
of the binary information in a digital computer is stored in memory, but all
computations are done in processor registers. Therefore, the user must have
the capability of moving information between these two units. Decision-
making capabilities are an important aspect of digital computers. For example,
two numbers can be compared, and if the first is greater than the second, it
may be necessary to proceed differently than if the second is greater than the
first. Program control instructions such as branch instructions are used to
change the sequence in which the program is executed. Input and output
instructions are needed for communication between the computer and the

136 CHAPTER FIVE Basic Computer Organization and Design

hexadecimal code

Chapter05.qxd 2/2/2007 6:25 PM Page 136

EON
PreMedia

CONFIRMING PGS

user. Programs and data must be transferred into memory and results of com-
putations must be transferred back to the user.

The instructions listed in Table 5-2 constitute a minimum set that
provides all the capabilities mentioned above. There is one arithmetic instruc-
tion, ADD, and two related instructions, complement AC(CMA) and incre-
ment AC(INC). With these three instructions we can add and subtract binary
numbers when negative numbers are in signed-2’s complement representa-
tion. The circulate instructions, CIR and CIL, can be used for arithmetic shifts
as well as any other type of shifts desired. Multiplication and division can be
performed using addition, subtraction, and shifting. There are three logic
operations: AND, complement AC(CMA), and clear AC(CLA). The AND and
complement provide a NAND operation. It can be shown that with the
NAND operation it is possible to implement all the other logic operations with
two variables (listed in Table 4-6). Moving information from memory to AC is
accomplished with the load AC(LDA) instruction. Storing information from
AC into memory is done with the store AC(STA) instruction. The branch
instructions BUN, BSA, and ISZ, together with the four skip instructions, pro-
vide capabilities for program control and checking of status conditions. The
input (INP) and output (OUT) instructions cause information to be transferred
between the computer and external devices.

Although the set of instructions for the basic computer is complete, it is
not efficient because frequently used operations are not performed rapidly. An
efficient set of instructions will include such instructions as subtract, multiply,
OR, and exclusive-OR. These operations must be programmed in the basic
computer. The programs are presented in Chap. 6 together with other pro-
gramming examples for the basic computer. By using a limited number of
instructions it is possible to show the detailed logic design of the computer.
A more complete set of instructions would have made the design too complex.
In this way we can demonstrate the basic principles of computer organization
and design without going into excessive complex details. In Chap. 8 we pres-
ent a complete list of computer instructions that are included in most com-
mercial computers.

The function of each instruction listed in Table 5-2 and the microopera-
tions needed for their execution are presented in Secs. 5-5 through 5-7 We
delay this discussion because we must first consider the control unit and
understand its internal organization.

5-4 Timing and Control
The timing for all registers in the basic computer is controlled by a master
clock generator. The clock pulses are applied to all flip-flops and registers in
the system, including the flip-flops and registers in the control unit. The clock
pulses do not change the state of a register unless the register is enabled by a

SECTION 5-4 Timing and Control 137

clock pulses

Chapter05.qxd 2/2/2007 6:25 PM Page 137

EON
PreMedia

CONFIRMING PGS

control signal. The control signals are generated in the control unit and pro-
vide control inputs for the multiplexers in the common bus, control inputs in
processor registers, and microoperations for the accumulator.

There are two major types of control organization: hardwired control
and microprogrammed control. In the hardwired organization, the control
logic is implemented with gates, flip-flops, decoders, and other digital cir-
cuits. It has the advantage that it can be optimized to produce a fast mode
of operation. In the microprogrammed organization, the control informa-
tion is stored in a control memory. The control memory is programmed to
initiate the required sequence of microoperations. A hardwired control, as
the name implies, requires changes in the wiring among the various compo-
nents if the design has to be modified or changed. In the microprogrammed
control, any required changes or modifications can be done by updating the
microprogram in control memory. A hardwired control for the basic com-
puter is presented in this section. A microprogrammed control unit for a
similar computer is presented in Chap. 7.

The block diagram of the control unit is shown in Fig. 5-6. It consists of
two decoders, a sequence counter, and a number of control logic gates. An
instruction read from memory is placed in the instruction register (IR). The
position of this register in the common bus system is indicated in Fig. 5-4. The
instruction register is shown again in Fig. 5-6, where it is divided into three
parts: the I bit, the operation code, and bits 0 through 11. The operation code
in bits 12 through 14 are decoded with a 3 � 8 decoder. The eight outputs of
the decoder are designated by the symbols D0 through D7. The subscripted
decimal number is equivalent to the binary value of the corresponding oper-
ation code. Bit 15 of the instruction is transferred to a flip-flop designated by
the symbol I. Bits 0 through 11 are applied to the control logic gates. The 4-bit
sequence counter can count in binary from 0 through 15. The outputs of the
counter are decoded into 16 timing signals T0 through T15. The internal logic
of the control gates will be derived later when we consider the design of the
computer in detail.

The sequence counter SC can be incremented or cleared synchronously
(see the counter of Fig. 2-11). Most of the time, the counter is incremented to
provide the sequence of timing signals out of the 4 � 16 decoder. Once in
awhile, the counter is cleared to 0, causing the next active timing signal to be
T0. As an example, consider the case where SC is incremented to provide tim-
ing signals T0, T1, T2, T3, and T4 in sequence. At time T4, SC is cleared to 0 if
decoder output D3 is active. This is expressed symbolically by the statement

D3T4: SC ← 0

The timing diagram of Fig. 5-7 shows the time relationship of the control sig-
nals. The sequence counter SC responds to the positive transition of the clock.
Initially, the CLR input of SC is active. The first positive transition of the clock

138 CHAPTER FIVE Basic Computer Organization and Design

hardwired control

microprogrammed
control

control unit

timing signals

Chapter05.qxd 2/2/2007 6:25 PM Page 138

EON
PreMedia

CONFIRMING PGS

clears SC to 0, which in turn activates the timing signal T0 out of the decoder.
T0 is active during one clock cycle. The positive clock transition labeled T0 in
the diagram will trigger only those registers whose control inputs are con-
nected to timing signal T0. SC is incremented with every positive clock transi-
tion, unless its CLR input is active. This produces the sequence of timing
signals T0, T1, T2, T3, T4, and so on, as shown in the diagram. (Note the rela-
tionship between the timing signal and its corresponding positive clock transi-
tion.) If SC is not cleared, the timing signals will continue with T5, T6, up to T15
and back to T0.

SECTION 5-4 Timing and Control 139

. . .

Instruction register (IR)

15 14 13 12 11– 0

3 � 8

7 6 5 4 3 2 1 0
decoder

4 � 16
15 14 2 1 0

4-bit
sequence
counter

(SC)

decoder

Other inputs

Control
logic
gates

Control
outputs

Increment (INR)

Clear (CLR)

Clock

I
D0

D7

T15

T0

...

...

. . .

Figure 5-6 Control unit of basic computer.

Chapter05.qxd 2/2/2007 6:25 PM Page 139

EON
PreMedia

CONFIRMING PGS

The last three waveforms in Fig. 5-7 show how SC is cleared when
D3T4 � 1. Output D3 from the operation decoder becomes active at the end of
timing signal T2. When timing signal T4 becomes active, the output of the
AND gate that implements the control function D3T4 becomes active. This sig-
nal is applied to the CLR input of SC. On the next positive clock transition
(the one marked T4 in the diagram) the counter is cleared to 0. This causes the
timing signal T0 to become active instead of T5 that would have been active if
SC were incremented instead of cleared.

A memory read or write cycle will be initiated with the rising edge of a
timing signal. It will be assumed that a memory cycle time is less than the
clock cycle time. According to this assumption, a memory read or write cycle
initiated by a timing signal will be completed by the time the next clock goes
through its positive transition. The clock transition will then be used to load
the memory word into a register. This timing relationship is not valid in many
computers because the memory cycle time is usually longer than the proces-
sor clock cycle. In such a case it is necessary to provide wait cycles in the

140 CHAPTER FIVE Basic Computer Organization and Design

Clock

T0

T0 T1 T2 T3 T4 T0

T1

T2

T3

T4

D3

CLR
SC

Figure 5-7 Example of control timing signals.

Chapter05.qxd 2/2/2007 6:25 PM Page 140

EON
PreMedia

CONFIRMING PGS

processor until the memory word is available. To facilitate the presentation, we
will assume that a wait period is not necessary in the basic computer.

To fully comprehend the operation of the computer, it is crucial that one
understands the timing relationship between the clock transition and the tim-
ing signals. For example, the register transfer statement

T0: AR ← PC

specifies a transfer of the content of PC into AR if timing signal T0 is active. T0
is active during an entire clock cycle interval. During this time the content of
PC is placed onto the bus (with S2S1S0 � 010) and the LD (load) input of AR is
enabled. The actual transfer does not occur until the end of the clock cycle
when the clock goes through a positive transition. This same positive clock
transition increments the sequence counter SC from 0000 to 0001. The next
clock cycle has T1 active and T0 inactive.

5-5 Instruction Cycle
A program residing in the memory unit of the computer consists of a sequence
of instructions. The program is executed in the computer by going through a
cycle for each instruction. Each instruction cycle in turn is subdivided into a
sequence of subcycles or phases. In the basic computer each instruction cycle
consists of the following phases:

1. Fetch an instruction from memory.
2. Decode the instruction.
3. Read the effective address from memory if the instruction has an indi-

rect address.
4. Execute the instruction.

Upon the completion of step 4, the control goes back to step 1 to fetch,
decode, and execute the next instruction. This process continues indefinitely
unless a HALT instruction is encountered.

Fetch and Decode
Initially, the program counter PC is loaded with the address of the first instruc-
tion in the program. The sequence counter SC is cleared to 0, providing a
decoded timing signal T0. After each clock pulse, SC is incremented by one,
so that the timing signals go through a sequence T0, T1, T2, and so on. The
microoperations for the fetch and decode phases can be specified by the fol-
lowing register transfer statements.

SECTION 5-5 Instruction Cycle 141

Chapter05.qxd 2/2/2007 6:25 PM Page 141

EON
PreMedia

CONFIRMING PGS

T0: AR ← PC

T1: IR ← M [AR], PC ← PC � 1

T2: D0,. . . , D7 ← Decode IR(12–14), AR ← IR(0�11), I ← IR (15)

Since only AR is connected to the address inputs of memory, it is neces-
sary to transfer the address from PC to AR during the clock transition associ-
ated with timing signal T0. The instruction read from memory is then placed
in the instruction register IR with the clock transition associated with timing

142 CHAPTER FIVE Basic Computer Organization and Design

T1 S2

S1

S0

AR

PC

IR

T0 Bus

7

1

2

5

Common bus

Clock
LD

LD

Read

Address

Memory unit

INR

Figure 5-8 Register transfers for the fetch phase.

Chapter05.qxd 2/2/2007 6:25 PM Page 142

EON
PreMedia

CONFIRMING PGS

signal T1. At the same time, PC is incremented by one to prepare it for the
address of the next instruction in the program. At rime T2, the operation code
in IR is decoded, the indirect bit is transferred to flip-flop I, and the address
part of the instruction is transferred to AR. Note that SC is incremented after
each clock pulse to produce the sequence T0, T1, and T2.

Figure 5-8 shows how the first two register transfer statements are
implemented in the bus system. To provide the data path for the transfer of PC
to AR we must apply timing signal T0 to achieve the following connection:

1. Place the content of PC onto the bus by making the bus selection inputs
S2S1S0 equal to 010.

2. Transfer the content of the bus to AR by enabling the LD input of AR.

The next clock transition initiates the transfer from PC to AR since T0 � 1. In
order to implement the second statement

T1: IR ← M[AR], PC ← PC � 1

it is necessary to use timing signal T1 to provide the following connections in
the bus system.

1. Enable the read input of memory.
2. Place the content of memory onto the bus by making S2S1S0 � 111.
3. Transfer the content of the bus to IR by enabling the LD input of IR.
4. Increment PC by enabling the INR input of PC.

The next clock transition initiates the read and increment operations since
T1 � 1.

Figure 5-8 duplicates a portion of the bus system and shows how T0 and
T1 are connected to the control inputs of the registers, the memory, and the
bus selection inputs. Multiple input OR gates are included in the diagram
because there are other control functions that will initiate similar operations.

Determine the Type of Instruction
The timing signal that is active after the decoding is T3. During time T3, the
control unit determines the type of instruction that was just read from mem-
ory. The flowchart of Fig. 5-9 presents an initial configuration for the instruc-
tion cycle and shows how the control determines the instruction type after the
decoding. The three possible instruction types available in the basic computer
are specified in Fig. 5-5.

Decoder output D7 is equal to 1 if the operation code is equal to binary
111. From Fig. 5-5 we determine that if D7 � 1, the instruction must be a

SECTION 5-5 Instruction Cycle 143

Chapter05.qxd 2/2/2007 6:25 PM Page 143

EON
PreMedia

CONFIRMING PGS

register-reference or input–output type. If D7 � 0, the operation code must be
one of the other seven values 000 through 110, specifying a memory-reference
instruction. Control then inspects the value of the first bit of the instruction,
which is now available in flip-flop I. If D7 � 0 and I � 1, we have a memory-
reference instruction with an indirect address. It is then necessary to read the

144 CHAPTER FIVE Basic Computer Organization and Design

T0

T1

T3 T3 T3 T3

T2

D7

AR ; PC

IR ; M [AR], PC ; PC � 1

Start
SC ; 0

Decode operation code in IR (12–14)
AR ; IR (0-–11), I ; IR (15)

(Register or I/0) � 1 � 0 (Memory-reference)

� 0 (register) � 0 (direct)(I/0) � 1

Execute
input-output
instruction

SC ; 0

Execute
register-reference

instruction
SC ; 0

Execute
memory-reference

instruction
SC ; 0

Nothing

I I
(indirect) � 1

AR ; M [AR]

Figure 5-9 Flowchart for instruction cycle (initial configuration).

Chapter05.qxd 2/2/2007 6:25 PM Page 144

EON
PreMedia

CONFIRMING PGS

effective address from memory. The microoperation for the indirect address
condition can be symbolized by the register transfer statement

AR ← M [AR]

Initially, AR holds the address part of the instruction. This address is used dur-
ing the memory read operation. The word at the address given by AR is read
from memory and placed on the common bus. The LD input of AR is then
enabled to receive the indirect address that resided in the 12 least significant
bits of the memory word.

The three instruction types are subdivided into four separate paths. The
selected operation is activated with the clock transition associated with timing
signal T3. This can be symbolized as follows:

D7�IT 3 : AR ← M [AR]

D7�IT3 : Nothing

D7 I �T3: Execute a register-reference instruction

D7 IT3 : Execute an input–output instruction

When a memory-reference instruction with I � 0 is encountered, it is not nec-
essary to do anything since the effective address is already in AR. However,
the sequence counter SC must be incremented when D7�T3 � 1, so that the exe-
cution of the memory-reference instruction can be continued with timing vari-
able T4. A register-reference or input-output instruction can be executed with
the clock associated with timing signal T3. After the instruction is executed, SC
is cleared to 0 and control returns to the fetch phase with T0 � 1.

Note that the sequence counter SC is either incremented or cleared to
0 with every positive clock transition. We will adopt the convention that if SC is
incremented, we will not write the statement SC ← SC � 1, but it will be implied
that the control goes to the next timing signal in sequence. When SC is to be
cleared, we will include the statement SC ← 0.

The register transfers needed for the execution of the register-reference
instructions are presented in this section. The memory-reference instructions
are explained in the next section. The input-output instructions are included
in Sec. 5-7.

Register-Reference Instructions
Register-reference instructions are recognized by the control when D7 � 1 and
I � 0. These instructions use bits 0 through 11 of the instruction code to spec-
ify one of 12 instructions. These 12 bits are available in IR (0–11). They were
also transferred to AR during time T2.

The control functions and microoperations for the register-reference
instructions are listed in Table 5-3. These instructions are executed with the

SECTION 5-5 Instruction Cycle 145

indirect address

Chapter05.qxd 2/2/2007 6:25 PM Page 145

EON
PreMedia

CONFIRMING PGS

clock transition associated with timing variable T3. Each control function
needs the Boolean relation D7I �T3, which we designate for convenience by
the symbol r. The control function is distinguished by one of the bits in
IR(0–11). By assigning the symbol B, to bit i of IR , all control functions can
be simply denoted by rBi. For example, the instruction CLA has the hexa-
decimal code 7800 (see Table 5-2), which gives the binary equivalent 0111
1000 0000 0000. The first bit is a zero and is equivalent to I �. The next three
bits constitute the operation code and are recognized from decoder output
D7. Bit 11 in IR is 1 and is recognized from B11. The control function that ini-
tiates the microoperation for this instruction is D7I �T3B11 � rB11. The execu-
tion of a register-reference instruction is completed at time T3. The sequence
counter SC is cleared to 0 and the control goes back to fetch the next instruc-
tion with timing signal T0.

The first seven register-reference instructions perform clear, comple-
ment, circular shift, and increment microoperations on the AC or E registers.
The next four instructions cause a skip of the next instruction in sequence
when a stated condition is satisfied. The skipping of the instruction is achieved
by incrementing PC once again (in addition, it is being incremented during the
fetch phase at time T1). The condition control statements must be recognized
as part of the control conditions. The AC is positive when the sign bit in AC
(15) � 0; it is negative when AC (15) � 1. The content of AC is zero (AC � 0) if
all the flip-flops of the register are zero. The HLT instruction clears a start-stop
flip-flop S and stops the sequence counter from counting. To restore the oper-
ation of the computer, the start–stop flip-flop must be set manually.

146 CHAPTER FIVE Basic Computer Organization and Design

TABLE 5-3 Execution of Register-Reference Instructions

D7I�T3 � r (common to all registcr-reference instructions)
IR(i) � Bi [bit in IR (0—11) that specifies the operation]

r : SC ← 0 Clear SC
CLA rB11: AC ← 0 Clear AC
CLE rB10: E ← 0 Clear E
CMA rB9: AC ← AC� Complement AC
CME rB8: E ← E— Complement E
CIR rB7: AC ← shr AC, AC (15) ← E, E ← AC (0) Circulate right
CIL rB6: AC ← shl AC, AC (0) ← E, E ← AC (15) Circulate left
INC rB5: AC* → AC � 1 Increment AC
SPA rB4: If (AC (15) � 0) then (PC ← PC � 1) Skip if positive
SNA rB3: If (AC (15) � 1) then (PC ← PC � 1) Skip if negative
SZA rB2: If (AC � 0) then PC ← PC � 1) Skip if AC zero
SZE rB1: If (E � 0) then (PC ← PC � 1) Skip if E zero
HLT rB0: S ← 0 (S is a start—stop flip-flop) Halt computer

Chapter05.qxd 2/2/2007 6:25 PM Page 146

EON
PreMedia

CONFIRMING PGS

5-6 Memory-Reference Instructions
In order to specify the microoperations needed for the execution of each
instruction, it is necessary that the function that they are intended to perform
be defined precisely. Looking back to Table 5-2, where the instructions are
listed, we find that some instructions have an ambiguous description. This is
because the explanation of an instruction in words is usually lengthy, and not
enough space is available in the table for such a lengthy explanation. We will
now show that the function of the memory-reference instructions can be
defined precisely by means of register transfer notation.

Table 5-4 lists the seven memory-reference instructions. The decoded
output Di for i � 0, 1, 2, 3, 4, 5, and 6 from the operation decoder that belongs
to each instruction is included in the table. The effective address of the instruc-
tion is in the address register AR and was placed there during timing signal T2
when I � 0, or during timing signal T3 when I � 1. The execution of the mem-
ory-reference instructions starts with timing signal T4. The symbolic descrip-
tion of each instruction is specified in the table in terms of register transfer
notation. The actual execution of the instruction in the bus system will require
a sequence of microoperations. This is because data stored in memory cannot
be processed directly. The data must be read from memory to a register where
they can be operated on with logic circuits. We now explain the operation of
each instruction and list the control functions and microoperations needed for
their execution. A flowchart that summarizes all the microoperations is pre-
sented at the end of this section.

SECTION 5-6 Memory-Reference Instructions 147

TABLE 5-4 Memory-Reference Instructions

Operation
Symbol decoder Symbolic description

AND D0 AC ← AC � M [AR]
ADD D1 AC ← AC � M [AR], E ← Cout

LDA D2 AC ← M [AR]
STA D3 M [AR] ← AC
BUN D4 PC ← AR
BSA D5 M [AR] ← PC, PC ← AR � 1
ISZ D6 M [AR] ← M [AR] � 1,

If M [AR] � 1 � 0 then PC ← PC � 1

AND to AC
This is an instruction that performs the AND logic operation on pairs of bits
in AC and the memory word specified by the effective address. The result of

effective address

Chapter05.qxd 2/2/2007 6:25 PM Page 147

EON
PreMedia

CONFIRMING PGS

the operation is transferred to AC. The microoperations that execute this
instruction are:

D0T4: DR ← M [AR]

D0T5: AC ← AC � DR , SC ← 0

The control function for this instruction uses the operation decoder D0 since
this output of the decoder is active when the instruction has an AND operation
whose binary code value is 000. Two timing signals are needed to execute the
instruction. The clock transition associated with timing signal T4 transfers the
operand from memory into DR. The clock transition associated with the next
timing signal T5 transfers to AC the result of the AND logic operation between
the contents of DR and AC. The same clock transition clears SC to 0, transfer-
ring control to timing signal T0 to start a new instruction cycle.

ADD to AC
This instruction adds the content of the memory word specified by the effec-
tive address to the value of AC. The sum is transferred into AC and the output
carry Cout is transferred to the E (extended accumulator) flip-flop. The micro-
operations needed to execute this instruction are

D1T4: DR ← M [AR]

D1T5: AC ← AC � DR , E ← Cout, SC ← 0

The same two timing signals, T4 and T5, are used again but with operation
decoder D1 instead of D0, which was used for the AND instruction. After the
instruction is fetched from memory and decoded, only one output of the oper-
ation decoder will be active, and that output determines the sequence of
microoperations that the control follows during the execution of a memory-
reference instruction.

LDA: Load to AC
This instruction transfers the memory word specified by the effective address
to AC. The microoperations needed to execute this instruction are

D2T4: DR ← M [AR]

D2T5: AC ← DR , SC ← 0

Looking back at the bus system shown in Fig. 5-4 we note that there is no direct
path from the bus into AC. The adder and logic circuit receive information

148 CHAPTER FIVE Basic Computer Organization and Design

Chapter05.qxd 2/2/2007 6:25 PM Page 148

EON
PreMedia

CONFIRMING PGS

from DR which can be transferred into AC. Therefore, it is necessary to read
the memory word into DR first and then transfer the content of DR into AC.
The reason for not connecting the bus to the inputs of AC is the delay encoun-
tered in the adder and logic circuit. It is assumed that the time it takes to read
from memory and transfer the word through the bus as well as the adder and
logic circuit is more than the time of one clock cycle. By not connecting the bus
to the inputs of AC we can maintain one clock cycle per microoperation.

STA: Store AC
This instruction stores the content of AC into the memory word specified by
the effective address. Since the output of AC is applied to the bus and the data
input of memory is connected to the bus, we can execute this instruction with
one microoperation:

D3T4: M [AR] ← AC, SC ← 0

BUN: Branch Unconditionally
This instruction transfers the program to the instruction specified by the effec-
tive address. Remember that PC holds the address of the instruction to be read
from memory in the next instruction cycle. PC is incremented at time T1 to
prepare it for the address of the next instruction in the program sequence. The
BUN instruction allows the programmer to specify an instruction out of
sequence and we say that the program branches (or jumps) unconditionally.
The instruction is executed with one microoperation:

D4T4: PC ← AR , SC ← 0

The effective address from AR is transferred through the common bus to PC.
Resetting SC to 0 transfers control to T0. The next instruction, is then fetched
and executed from the memory address given by the new value in PC.

BSA: Branch and Save Return Address
This instruction is useful for branching to a portion of the program called a
subroutine or procedure. When executed, the BSA instruction stores the
address of the next instruction in sequence (which is available in PC) into a
memory location specified by the effective address. The effective address plus
one is then transferred to PC to serve as the address of the first instruction in
the subroutine. This operation was specified in Table 5-4 with the following
register transfer:

M [AR] ← PC, PC ← AR � 1

SECTION 5-6 Memory-Reference Instructions 149

Chapter05.qxd 2/2/2007 6:25 PM Page 149

EON
PreMedia

CONFIRMING PGS

A numerical example that demonstrates how this instruction is used with
a subroutine is shown in Fig. 5-10. The BSA instruction is assumed to be in
memory at address 20. The I bit is 0 and the address part of the instruction has
the binary equivalent of 135. After the fetch and decode phases, PC contains
21, which is the address of the next instruction in the program (referred to as
the return address). AR holds the effective address 135. This is shown in part (a)
of the figure. The BSA instruction performs the following numerical operation:

M [135] ← 21, PC ← 135 � 1 � 136

The result of this operation is shown in part (b) of the figure. The return address
21 is stored in memory location 135 and control continues with the subroutine
program starting from address 136. The return to the original program (at
address 21) is accomplished by means of an indirect BUN instruction placed at
the end of the subroutine. When this instruction is executed, control goes to the
indirect phase to read the effective address at location 135, where it finds the
previously saved address 21. When the BUN instruction is executed, the effec-
tive address 21 is transferred to PC. The next instruction cycle finds PC with the
value 21, so control continues to execute the instruction at the return address.

The BSA instruction performs the function usually referred to as a sub-
routine call. The indirect BUN instruction at the end of the subroutine
performs the function referred to as a subroutine return. In most commercial
computers, the return address associated with a subroutine is stored in either a
processor register or in a portion of memory called a stack. This is discussed in
more detail in Sec. 8-7.

150 CHAPTER FIVE Basic Computer Organization and Design

return address

subroutine call

PC�21

AR�135

136

Memory

(a) Memory, PC, and AR at time T4 (b) Memory and PC after execution

Next instruction

Subroutine

1 BUN 135

20 0 BSA 135

21

21135

PC �136

Memory

Next instruction

Subroutine

1 BUN 135

20 0 BSA 135

Figure 5-10 Example of BSA instruction execution.

Chapter05.qxd 2/2/2007 6:25 PM Page 150

EON
PreMedia

CONFIRMING PGS

It is not possible to perform the operation of the BSA instruction in one
clock cycle when we use the bus system of the basic computer. To use the
memory and the bus properly, the BSA instruction must be executed with a
sequence of two microoperations:

D5T4: M [AR] ← PC, AR ← AR � 1

D5T5: PC ← AR , SC ← 0

Timing signal T4 initiates a memory write operation, places the content of PC
onto the bus, and enables the INR input of AR. The memory write operation
is completed and AR is incremented by the time the next clock transition
occurs. The bus is used at T5 to transfer the content of AR to PC.

ISZ: Increment and Skip if Zero
This instruction increments the word specified by the effective address, and if
the incremented value is equal to 0, PC is incremented by 1. The programmer
usually stores a negative number (in 2’s complement) in the memory word. As
this negative number is repeatedly incremented by one, it eventually reaches
the value of zero. At that time PC is incremented by one in order to skip the
next instruction in the program.

Since it is not possible to increment a word inside the memory, it is nec-
essary to read the word into DR , increment DR , and store the word back into
memory. This is done with the following sequence of microoperations:

D6T4: DR ← M [AR]

D6T5: DR ← DR � 1

D6T6: M [AR] ← DR , if (DR � 0) then (PC ← PC � 1), SC ← 0

Control Flowchart
A flowchart showing all microoperations for the execution of the seven mem-
ory-reference instructions is shown in Fig. 5-11. The control functions are indi-
cated on top of each box. The microoperations that are performed during time
T4, T5, or T6 depend on the operation code value. This is indicated in the flow-
chart by six different paths, one of which the control takes after the instruction
is decoded. The sequence counter SC is cleared to 0 with the last timing sig-
nal in each case. This causes a transfer of control to timing signal T0 to start the
next instruction cycle.

Note that we need only seven timing signals to execute the longest
instruction (ISZ). The computer can be designed with a 3-bit sequence
counter. The reason for using a 4-bit counter for SC is to provide additional
timing signals for other instructions that are presented in the problems section.

SECTION 5-6 Memory-Reference Instructions 151

Chapter05.qxd 2/2/2007 6:25 PM Page 151

EON
PreMedia

CONFIRMING PGS

5-7 Input–Output and Interrupt
A computer can serve no useful purpose unless it communicates with the
external environment. Instructions and data stored in memory must come
from some input device. Computational results must be transmitted to the
user through some output device. Commercial computers include many types

152 CHAPTER FIVE Basic Computer Organization and Design

D0T0

D0T5

D4T4 D5T4

D5T5 D6T5

D6T6

D6T4

D1T5 D2T5

DR ; M [AR]

AC ; AC � DR

PC ; AR M [AR] ; PC

M [AR] ; DR
If (DR � 0)
then (PC ; PC � 1)
s C to

DR ; M [AR]

PC ; AR

SC ; 0

SC ; 0 AR ; AR � 1

DR ; DR � 1

AC ; AC � DR AC ; DR

SC ; 0 SC ; 0 SC ; 0
E ; Cout

DR ; M [MAR] DR ; M [AR] M [AR] ; AC
SC ; 0

D1T4 D2T4 D3T4

Memory – reference instruction

AND

BUN BSA ISZ

ADD LDA STA

Figure 5-11 Flowchart for memory-reference instructions.

Chapter05.qxd 2/2/2007 6:25 PM Page 152

EON
PreMedia

CONFIRMING PGS

of input and output devices. To demonstrate the most basic requirements for
input and output communication, we will use as an illustration a terminal unit
with a keyboard and printer. Input–output organization is discussed further
in Chap. 11.

Input–Output Configuration
The terminal sends and receives serial information. Each quantity of informa-
tion has eight bits of an alphanumeric code. The serial information from the
keyboard is shifted into the input register INPR. The serial information for the
printer is stored in the output register OUTR. These two registers communi-
cate with a communication interface serially and with the AC in parallel. The
input–output configuration is shown in Fig. 5-12. The transmitter interface
receives serial information from the keyboard and transmits it to INPR. The
receiver interface receives information from OUTR and sends it to the printer
serially. The operation of the serial communication interface is explained in
Sec. 11-3.

The input register INPR consists of eight bits and holds an alphanumeric
input information. The 1-bit input flag FGI is a control flip-flop. The flag bit is

SECTION 5-7 Input–Output and Interrupt 153

Input–output
terminal

Printer

Keyboard Transmitter
interface

Receiver
interface

OUTR

INPR

FGI

AC

FGO

Serial
communication

interface

Computer
registers and

flip-flops

Figure 5-12 Input–output configuration.

input register

Chapter05.qxd 2/2/2007 6:25 PM Page 153

EON
PreMedia

CONFIRMING PGS

154 CHAPTER FIVE Basic Computer Organization and Design

set to 1 when new information is available in the input device and is cleared
to 0 when the information is accepted by the computer. The flag is needed to
synchronize the timing rate difference between the input device and the com-
puter. The process of information transfer is as follows. Initially, the input flag
FGI is cleared to 0. When a key is struck in the keyboard, an 8-bit alphanu-
meric code is shifted into INPR and the input flag FGI is set to 1. As long as
the flag is set, the information in INPR cannot be changed by striking another
key. The computer checks the flag bit; if it is 1, the information from INPR is
transferred in parallel into AC and FGI is cleared to 0. Once the flag is cleared,
new information can be shifted into INPR by striking another key.

The output register OUTR works similarly but the direction of informa-
tion flow is reversed. Initially, the output flag FGO is set to 1. The computer
checks the flag bit; if it is 1, the information from AC is transferred in parallel
to OUTR and FGO is cleared to 0. The output device accepts the coded infor-
mation, prints the corresponding character, and when the operation is com-
pleted, it sets FGO to 1. The computer does not load a new character into
OUTR when FGO is 0 because this condition indicates that the output device
is in the process of printing the character.

Input–Output Instructions
Input and output instructions are needed for transferring information to and
from AC register, for checking the flag bits, and for controlling the interrupt
facility. Input–output instructions have an operation code 1111 and are recog-
nized by the control when D7 � 1 and I � 1. The remaining bits of the instruc-
tion specify the particular operation. The control functions and microoperations
for the input–output instructions are listed in Table 5-5. These instructions are
executed with the clock transition associated with timing signal T3. Each con-
trol function needs a Boolean relation D7IT3, which we designate for conven-
ience by the symbol p. The control function is distinguished by one of the bits
in IR (6–11). By assigning the symbol Bi to bit i of IR , all control functions can

TABLE 5-5 Input–Output Instructions

D7IT3 � p (common to all input–output instructions)
IR(i) � Bi [bit in IR(6–11) that specifies the instruction]

p: SC ← 0 Clear SC
INP pB11: AC (0–7) ← INPR , FGI ← 0 Input character
OUT pB10: OUTR ← AC (0–7), FGO ← 0 Output character
SKI pB9: If (FGI � 1) then (PC ← PC � 1) Skip on input flag
SKO pB8: If (FGO � 1) then (PC ← PC � 1) Skip on output flag
ION pB7: IEN ← 1 Interrupt enable on
IOF pB6: IEN ← 0 Interrupt enable off

output register

Chapter05.qxd 2/2/2007 6:25 PM Page 154

EON
PreMedia

CONFIRMING PGS

be denoted by pBi for i � 6 though 11. The sequence counter SC is cleared to
0 when p � D7IT3 � 1.

The INP instruction transfers the input information from INPR into the
eight low-order bits of AC and also clears the input flag to 0. The OUT
instruction transfers the eight least significant bits of AC into the output
register OUTR and clears the output flag to 0. The next two instructions in
Table 5-5 check the status of the flags and cause a skip of the next instruction
if the flag is 1. The instruction that is skipped will normally be a branch
instruction to return and check the flag again. The branch instruction is not
skipped if the flag is 0. If the flag is 1, the branch instruction is skipped and
an input or output instruction is executed. (Examples of input and output pro-
grams are given in Sec. 6-8.) The last two instructions set and clear an inter-
rupt enable flip-flop IEN. The purpose of IEN is explained in conjunction
with the interrupt operation.

Program Interrupt
The process of communication just described is referred to as programmed
control transfer. The computer keeps checking the flag bit, and when it
finds it set, it initiates an information transfer. The difference of information
flow rate between the computer and that of the input–output device makes
this type of transfer inefficient. To see why this is inefficient, consider a
computer that can go through an instruction cycle in 1 �s. Assume that the
input–output device can transfer information at a maximum rate of 10 char-
acters per second. This is equivalent to one character every 100,000 �s. Two
instructions are executed when the computer checks the flag bit and decides
not to transfer the information. This means that at the maximum rate, the
computer will check the flag 50,000 times between each transfer. The com-
puter is wasting time while checking the flag instead of doing some other
useful processing task.

An alternative to the programmed controlled procedure is to let the
external device inform the computer when it is ready for the transfer. In the
meantime the computer can be busy with other tasks. This type of transfer
uses the interrupt facility. While the computer is running a program, it does
not check the flags. However, when a flag is set, the computer is momentarily
interrupted from proceeding with the current program and is informed of the
fact that a flag has been set. The computer deviates momentarily from what it
is doing to take eare of the input or output transfer. It then returns to the cur-
rent program to continue what it was doing before the interrupt.

The interrupt enable flip-flop IEN can be set and cleared with two
instructions. When IEN is cleared to 0 (with the IOF instruction), the flags can-
not interrupt the computer. When IEN is set to 1 (with the ION instruction),
the computer can be interrupted. These two instructions provide the pro-
grammer with the capability of making a decision as to whether or not to use
the interrupt facility.

SECTION 5-7 Input–Output and Interrupt 155

Chapter05.qxd 2/2/2007 6:25 PM Page 155

EON
PreMedia

CONFIRMING PGS

The way that the interrupt is handled by the computer can be explained
by means of the flowchart of Fig. 5-13. An interrupt flip-flop R is included in
the computer. When R � 0, the computer goes through an instruction cycle.
During the execute phase of the instruction cycle IEN is checked by the con-
trol. If it is 0, it indicates that the programmer does not want to use the inter-
rupt, so control continues with the next instruction cycle. If IEN is 1, control
checks the flag bits. If both flags are 0, it indicates that neither the input nor
the output registers are ready for transfer of information. In this case, control
continues with the next instruction cycle. If either flag is set to 1 while
IEN � 1, flip-flop R is set to 1. At the end of the execute phase, control checks
the value of R , and if it is equal to 1, it goes to an interrupt cycle instead of an
instruction cycle.

The interrupt cycle is a hardware implementation of a branch and save
return address operation. The return address available in PC is stored in a
specific location where it can be found later when the program returns to the
instruction at which it was interrupted. This location may be a processor

156 CHAPTER FIVE Basic Computer Organization and Design

R
�0

�0

�1

�0

�0

�1

�1

�1 Interrupt cycleInstruction cycle

Fetch and decode
instruction

Execute
instruction

Branch to location 1
PC ← 1

Store return address
in location 0
M [0] ← PC

IEN ← 0
R ← 0

R ← 1

IEN

FGI

FGO

Figure 5-13 Flowchart for interrupt cycle.

interrupt cycle

Chapter05.qxd 2/2/2007 6:25 PM Page 156

EON
PreMedia

CONFIRMING PGS

register, a memory stack, or a specific memory location. Here we choose the
memory location at address 0 as the place for storing the return address.
Control then inserts address 1 into PC and clears IEN and R so that no more
interruptions can occur until the interrupt request from the flag has been
serviced.

An example that shows what happens during the interrupt cycle is shown
in Fig. 5-14. Suppose that an interrupt occurs and R is set to 1 while the con-
trol is executing the instruction at address 255. At this time, the return address
256 is in PC. The programmer has previously placed an input–output service
program in memory starting from address 1120 and a BUN 1120 instruction
at address 1. This is shown in Fig. 5-14(a).

When control reaches timing signal T0 and finds that R � 1, it proceeds
with the interrupt cycle. The content of PC (256) is stored in memory loca-
tion 0, PC is set to 1, and R is cleared to 0. At the beginning of the next
instruction cycle, the instruction that is read from memory is in address
1 since this is the content of PC. The branch instruction at address 1 causes
the program to transfer to the input–output service program at address 1120.
This program checks the flags, determines which flag is set, and then trans-
fers the required input or output information. Once this is done, the instruc-
tion ION is executed to set IEN to 1 (to enable further interrupts), and the
program returns to the location where it was interrupted. This is shown in
Fig. 5-14(b).

The instruction that returns the computer to the original place in the
main program is a branch indirect instruction with an address part of 0. This
instruction is placed at the end of the I/O service program. After this instruction

SECTION 5-7 Input–Output and Interrupt 157

Memory Memory

0 BUN

Main
program

I/O
program

Main
program

I/O
program

1120 0 BUN 1120

1

(a) Before interrupt (b) After interrupt cycle

BUN 0 1 BUN 0

1120 1120

0 0 256

1

255
PC � 256

PC � 1

255
 256

Figure 5-14 Demonstration of the interrupt cycle.

Chapter05.qxd 2/2/2007 6:25 PM Page 157

EON
PreMedia

CONFIRMING PGS

158 CHAPTER FIVE Basic Computer Organization and Design

is read from memory during the fetch phase, control goes to the indirect phase
(because I � 1) to read the effective address. The effective address is in loca-
tion 0 and is the return address that was stored there during the previous inter-
rupt cycle. The execution of the indirect BUN instruction results in placing
into PC the return address from location 0.

Interrupt Cycle
We are now ready to list the register transfer statements for the interrupt cycle.
The interrupt cycle is initiated after the last execute phase if the interrupt flip-
flop R is equal to 1. This flip-flop is set to 1 if IEN � 1 and either FGI or FGO
are equal to 1. This can happen with any clock transition except when timing
signals T0, T1, or T2 are active. The condition for setting flip-flop R to 1 can be
expressed with the following register transfer statement:

T0�T1�T2�(IEN)(FGI � FGO): R ← l

The symbol � between FGI and FGO in the control function designates a
logic OR operation. This is ANDed with IEN and T0�T1�T2�.

We now modify the fetch and decode phases of the instruction cycle.
Instead of using only timing signals T0, T1, and T2 (as shown in Fig. 5-9) we will
AND the three timing signals with R� so that the fetch and decode phases will
be recognized from the three control functions R�T0, R�T1, and R�T2. The rea-
son for this is that after the instruction is executed and SC is cleared to 0, the
control will go through a fetch phase only if R � 0. Otherwise, if R � 1, the
control will go through an interrupt cycle. The interrupt cycle stores the return
address (available in PC) into memory location 0, branches to memory loca-
tion 1, and clears IEN, R , and SC to 0. This can be done with the following
sequence of microoperations:

RT0: AR ← 0, TR ← PC

RT1: M [AR] ← TR , PC ← 0

RT2: PC ← PC � 1, IEN ← 0, R ← 0, SC ← 0

During the first timing signal AR is cleared to 0, and the content of PC is
transferred to the temporary register TR. With the second timing signal, the
return address is stored in memory at location 0 and PC is cleared to 0. The
third timing signal increments PC to 1, clears IEN and R , and control goes
back to T0 by clearing SC to 0. The beginning of the next instruction cycle
has the condition R�T0 and the content of PC is equal to 1. The control then
goes through an instruction cycle that fetches and executes the BUN instruc-
tion in location 1.

modified fetch
phase

Chapter05.qxd 2/2/2007 6:25 PM Page 158

EON
PreMedia

CONFIRMING PGS

SECTION 5-9 Design of Basic Computer 159

5-8 Complete Computer Description
The final flowchart of the instruction cycle, including the interrupt cycle for
the basic computer, is shown in Fig. 5-15. The interrupt flip-flop R may be set
at any time during the indirect or execute phases. Control returns to timing
signal T0 after SC is cleared to 0. If R � 1, the computer goes through an inter-
rupt cycle. If R � 0, the computer goes through an instruction cycle. If the
instruction is one of the memory-reference instructions, the computer first
checks if there is an indirect address and then continues to execute the
decoded instruction according to the flowchart of Fig. 5-11. If the instruction
is one of the register-reference instructions, it is executed with one of the
microoperations listed in Table 5-3. If it is an input–output instruction, it is
executed with one of the microoperations listed in Table 5-5.

Instead of using a flowchart, we can describe the operation of the com-
puter with a list of register transfer statements. This is done by accumulating
all the control functions and microoperations in one table. The entries in the
table are taken from Figs. 5-11 and 5-16, and Tables 5-3 and 5-5.

The control functions and microoperations for the entire computer are
summarized in Table 5-6. The register transfer statements in this table describe
in a concise form the internal organization of the basic computer. They also
give all the information necessary for the design of the logic circuits of the
computer. The control functions and conditional control statements listed in
the table formulate the Boolean functions for the gates in the control unit. The
list of microoperations specifies the type of control inputs needed for the reg-
isters and memory. A register transfer language is useful not only for describ-
ing the internal organization of a digital system but also for specifying the logic
circuits needed for its design.

5-9 Design of Basic Computer
The basic computer consists of the following hardware components:

1. A memory unit with 4096 words of 16 bits each
2. Nine registers: AR , PC, DR , AC, IR , TR , OUTR , INPR , and SC
3. Seven flip-flops: I, S, E, R, IEN, FGI, and FGO
4. Two decoders: a 3 � 8 operation decoder and a 4 � 16 timing decoder
5. A 16-bit common bus
6. Control logic gates
7. Adder and logic circuit connected to the input of AC

The functional block diagram of the hypothetic BASIC computer is as
shown below:

flowchart for basic
computer

Chapter05.qxd 2/2/2007 6:25 PM Page 159

EON
PreMedia

CONFIRMING PGS

The memory unit is a standard component that can be obtained readily
from a commercial source. The registers are of the type shown in Fig. 2-11 and
are similar to integrated circuit type 74163. The flip-flops can be either of the
D or JK type, as described in Sec. 1-6. The two decoders are standard compo-
nents similar to the ones presented in Sec. 2-2. The common bus system can be
constructed with sixteen 8 � 1 multiplexers in a configuration similar to the
one shown in Fig. 4-3. We are now going to show how to design the control
logic gates. The next section deals with the design of the adder and logic cir-
cuit associated with AC.

Control Logic Gates
The block diagram of the control logic gates is shown in Fig. 5-6. The inputs
to this circuit come from the two decoders, the I flip-flop, and bits 0 through
11 of IR. The other inputs to the control logic are: AC bits 0 through 15 to
check if AC � 0 and to detect the sign bit in AC (15); DR bits 0 through 15 to
check if DR � 0; and the values of the seven flip-flops.

The outputs of the control logic circuit are:

1. Signals to control the inputs of the nine registers
2. Signals to control the read and write inputs of memory
3. Signals to set, clear, or complement the flip-flops
4. Signals for S2, S1, and S0 to select a register for the bus
5. Signals to control the AC adder and logic circuit

The specifications for the various control signals can be obtained directly from
the list of register transfer statements in Table 5-6.

Control of Registers and Memory
The registers of the computer connected to a common bus system are shown
in Fig. 5-4. The control inputs of the registers are LD (load), INR (increment),

160 CHAPTER FIVE Basic Computer Organization and Design

Power-on-reset
circuit

Input device Output device

Clock 16-bit
processor

Common
bus

R

CLK

INPR OUTR

WR
RD

4K�16
Memory

WR
RD
AB

DB
16

12

Figure 5-15 Flow chart for hypothetic basic computer.

control unit

Chapter05.qxd 2/2/2007 6:25 PM Page 160

EON
PreMedia

CONFIRMING PGS

SECTION 5-9 Design of Basic Computer 161

Start
SC ← 0, IEN ← 0, R ← 0

(instruction cycle) � 0

(Register or I/0) � 1

(I/0) � 1 � 0 (register)

Execute
input–output
instruction
(Table 5-5)

Execute
register–reference

instruction
(Table 5-3)

Execute
memory–reference

instruction
(Fig. 5-11)

(indirect) � 1 � 0 (direct)

Nothing

� 1 (interrupt cycle)

� 0 (Memory–reference)

R

AR ← PC

IR ← M [AR], PC ← PC � 1

R�T0

R�T1

R�T2 RT2

RT1

RT0

AR ← 0, TR ← PC

M [AR] ← T R , PC ← 0

PC ← PC � 1, IEN ← 0
R ← 0, SC ← 0

AR ← IR (0 –1 1), I ← IR (15)
D0 . . . D7 ← Decode IR (1 2 –1 4)

D7

I I

D7I T3 D7I �T3 D�7I T3 D�7I �T3

AR ← M [AR]

Figure 5-16 Flowchart for computer operation.

Chapter05.qxd 2/2/2007 6:25 PM Page 161

EON
PreMedia

CONFIRMING PGS

162 CHAPTER FIVE Basic Computer Organization and Design

TABLE 5-6 Control Functions and Microoperations for the Basic Computer

Fetch R�T0: AR ← PC
R�T1: IR ← M [AR], PC ← PC � 1

Decode R�T2: D0, . . . , D7 ← Decode IR (12–14),
AR ← IR (0–11). I ← IR (15)

Indirect D7��T3: AR ← M [AR]
Interrupt:
T0T1�T2�(IEN)(FGI � FGO): R ← l

RT0: AR ← 0, TR ← PC
RT1: M [AR] ← TR , PC ← 0
RT2: PC ← PC � 1, IEN ← 0, R ← 0, SC ← 0

Memory-reference:
AND D0T4: DR ← M[AR]

D0T5: AC ← AC � DR , SC → 0
ADD D1T4: DR ← M [AR]

D1T5: AC ← AC � DR , E ← Cout → SC ← 0
LDA D2T4: DR ← M [AR]

D2T5: AC ← DR , SC ← 0
STA D3T4: M [AR] ← AC, SC ← 0
BUN D4T4: PC ← AR , SC ← 0
BSA D5T4: M [AR] ← PC, AR ← AR + 1

D5T5: PC ← AR , SC ← 0
ISZ D6T4: DR ← M [AR]

D6T5: DR ← DR � 1
D6T6: M [AR] ← DR , if (DR � 0) then

(PC ← PC � 1), SC ← 0
Register–reference:

D7I�T3 � r (common to all register-reference instruct ions
IR(i) � Bi (i � 0, 1, 2, . . . , 11)

r : SC ← 0
CLA rB11: AC ← 0
CLE rB10: E ← 0
CMA rB9: AC ← AC

�

CME rB8: E ← E
—

CIR rB7: AC ← shr AC, AC (15) ← E, E ← AC (0)
CIL rB6: AC ← shl AC, AC (0) ← E, E ← AC (15)
INC rB5: AC ← AC + 1
SPA rB4: If (AC (15) = 0) then (PC ← PC + 1)
SNA rB3: If (AC (15) = 1) then (PC ← PC + 1)
SZA rB2: If (AC = 0) then PC ← PC + 1)
SZE rB1: If (E = 0) then (PC ← PC + 1)
HLT rB0: S ← 0
Input–output:

D7IT3 � p (common to all input–output instructions)
IR(i) � Bi (i � 6, 7, 8, 9, 10, 11)

p: SC ← 0
INP pB11: AC(0–7) ← INPR , FGI ← 0
OUT pB10: OUTR ← AC (0–7), FGO ← 0
SKI pB9: If (FGI = 1) then (PC ← PC + 1)
SKO pB8: If (FGO = 1) then (PC ← PC + 1)
ION pB7: IEN ← 1
IOF pB6: IEN ← 0

Chapter05.qxd 2/2/2007 6:25 PM Page 162

EON
PreMedia

CONFIRMING PGS

and CLR (clear). Suppose that we want to derive the gate structure associated
with the control inputs of AR. We scan Table 5-6 to find all the statements that
change the content of AR:

R�T0: AR ← PC
R�T2: AR ← IR(0–11)

D7�IT3: AR ← M [AR]
RT0: AR ← 0

D5T4: AR ← AR � 1

The first three statements specify transfer of information from a register
or memory to AR. The content of the source register or memory is placed on
the bus and the content of the bus is transferred into AR by enabling its LD
control input. The fourth statement clears AR to 0. The last statement incre-
ments AR by 1. The control functions can be combined into three Boolean
expressions as follows:

LD(AR) � R�T0 � R�T2 � D7�IT3
CLR(AR) � RT0
INR(AR) � D5T4

where LD(AR) is the load input of AR , CLR(AR) is the clear input of AR , and
INR(AR) is the increment input of AR. The control gate logic associated with
AR is shown in Fig. 5-17.

In a similar fashion we can derive the control gates for the other registers
as well as the logic needed to control the read and write inputs of memory. The
logic gates associated with the read input of memory is derived by scanning

SECTION 5-9 Design of Basic Computer 163

Clock

12
To busFrom bus

12

LD INR CLR

AR

D�7

T3

T2

D5
T4

T0

R

I

Figure 5-17 Control gates associated with AR.

Chapter05.qxd 2/2/2007 6:25 PM Page 163

EON
PreMedia

CONFIRMING PGS

Table 5-6 to find the statements that specify a read operation. The read opera-
tion is recognized from the symbol ← M [AR].

Read � R�T1 � D7� IT3 � (D0 � D1 � D2 � D6)T4

The output of the logic gates that implement the Boolean expression above
must be connected to the read input of memory.

Control of Single Flip-flops
The control gates for the seven flip-flops can be determined in a similar man-
ner. For example, Table 5-6 shows that IEN may change as a result of the two
instructions ION and IOF.

pB7: IEN ← 1
pB6: IEN ← 0

where p � D7IT3 and B7 and B6 are bits 7 and 6 of IR , respectively. Moreover,
at the end of the interrupt cycle IEN is cleared to 0.

RT2: IEN ← 0

If we use a JK flip-flip for IEN, the control gate logic will be as shown in
Fig. 5-18.

Control of Common Bus
The 16-bit common bus shown in Fig. 5-4 is controlled by the selection inputs
S 2, S1, and S0. The decimal number shown with each bus input specifies the
equivalent binary number that must be applied to the selection inputs in order
to select the corresponding register. Table 5-7 specifies the binary numbers for
S2S1S0 that select each register. Each binary number is associated with a
Boolean variable x1 through x7, corresponding to the gate structure that must
be active in order to select the register or memory for the bus. For example,
when x1 � 1, the value of S2S1S0 must be 001 and the output of AR will be

164 CHAPTER FIVE Basic Computer Organization and Design

Clock

IENJ
p

B7

D7

T3
I

B6

T2

R

Q

K

Figure 5-18 Control input for IEN.

Chapter05.qxd 2/2/2007 6:25 PM Page 164

EON
PreMedia

CONFIRMING PGS

selected for the bus. Table 5-7 is recognized as the truth table of a binary
encoder. The placement of the encoder at the inputs of the bus selection logic
is shown in Fig. 5-19. The Boolean functions for the encoder are

S0 � x1 � x3 � x5 � x7

S1 � x2 � x3 � x6 � x7

S2 � x4 � x5 � x6 � x7

To determine the logic for each encoder input, it is necessary to find the
control functions that place the corresponding register onto the bus. For exam-
ple, to find the logic that makes x1 � 1, we scan all register transfer statements
in Table 5-6 and extract those statements that have AR as a source.

D4T4: PC ← AR
D5T5: PC ← AR

Therefore, the Boolean function for x1 is

x1 � D4T4 � D5T5

SECTION 5-9 Design of Basic Computer 165

0 0 0 0 0 0 0 0 0 0 None
1 0 0 0 0 0 0 0 0 1 AR
0 1 0 0 0 0 0 0 1 0 PC
0 0 1 0 0 0 0 0 1 1 DR
0 0 0 1 0 0 0 1 0 0 AC
0 0 0 0 1 0 0 1 0 1 IR
0 0 0 0 0 1 0 1 1 0 TR
0 0 0 0 0 0 1 1 1 1 Memory

S2

Encoder
Multiplexer
bus select

inputs
S1

S0

x2

x1

x3
x4
x5
x6
x7

Figure 5-19 Encoder for bus selection inputs.

TABLE 5-7 Encoder for Bus Selection Circuit

Inputs Outputs Register
selected

x1 x2 x3 x4 x5 x6 x7 S2 S1 S0 for bus

Chapter05.qxd 2/2/2007 6:25 PM Page 165

EON
PreMedia

CONFIRMING PGS

The data output from memory are selected for the bus when x7 � 1 and
S2S1S0 � 111. The gate logic that generates x7 must also be applied to the read
input of memory. Therefore, the Boolean function for x7 is the same as the one
derived previously for the read operation.

x7 � R�T1 � D�7IT3 � (D0 � D1 � D2 � D6)T4

In a similar manner we can determine the gate logic for the other registers.

5-10 Design of Accumulator Logic
The circuits associated with the AC register are shown in Fig. 5-20. The adder
and logic circuit has three sets of inputs. One set of 16 inputs comes from the
outputs of AC. Another set of 16 inputs comes from the data register DR.
A third set of eight inputs comes from the input register INPR. The outputs of
the adder and logic circuit provide the data inputs for the register. In addition,
it is necessary to include logic gates for controlling the LD, INR, and CLR in
the register and for controlling the operation of the adder and logic circuit.

In order to design the logic associated with AC, it is necessary to go over
the register transfer statements in Table 5-6 and extract all the statements that
change the content of AC.

D0T5: AC ← AC � DR AND with DR
D1T5: AC ← AC � DR Add with DR
D2T5: AC ← DR Transfer from DR

166 CHAPTER FIVE Basic Computer Organization and Design

Control
gates

Adder and
logic

circuit

Accumulator
register

(AC)

16

16 16 16

To bus

Clock
CLRINRLD

From DR

From INPR
8

Figure 5-20 Circuits associated with AC.

Chapter05.qxd 2/2/2007 6:25 PM Page 166

EON
PreMedia

CONFIRMING PGS

pB11: AC (0�7) ← INPR Transfer from INPR
rB9: AC ← AC� Complement
rB7: AC ← shr AC, AC (15) ← E Shift right
rB6: AC ← shl AC, AC (0) ← E Shift left

rB11: AC ← 0 Clear
rB5: AC ← AC � 1 Increment

From this list we can derive the control logic gates and the adder and Logic
circuit.

Control of AC Register
The gate structure that controls the LD, INR, and CLR inputs of AC is shown
in Fig. 5-21. The gate configuration is derived from the control functions in the

SECTION 5-10 Design of Accumulator Logic 167

16 16
To bus

Clock

INR CLR

AC

LDANDD0
T5

D1

D2
T5

B11

B7

B9

B6

B5

B11

r

P

ADD

DR

INPR

COM

SHR

SHL

CLR

INC

From adder
and logic

Figure 5-21 Gate structure for controlling the LD, INR, and CLR of AC.

Chapter05.qxd 2/2/2007 6:25 PM Page 167

EON
PreMedia

CONFIRMING PGS

list above. The control function for the clear microoperation is rB11, where
r � D7I�T3 and B11 � IR(11). The output of the AND gate that generates this
control function is connected to the CLR input of the register. Similarly, the
output of the gate that implements the increment microoperation is connected
to the INR input of the register. The other seven microoperations are gener-
ated in the adder and logic circuit and are loaded into AC at the proper time.
The outputs of the gates for each control function is marked with a symbolic
name. These outputs are used in the design of the adder and logic circuit.

Adder and Logic Circuit
The adder and logic circuit can be subdivided into 16 stages, with each stage
corresponding to one bit of AC. The internal construction of the register is
as shown in Fig. 2-11. Looking back at that figure we note that each stage has
a JK flip-flop, two OR gates, and two AND gates. The load (LD) input is con-
nected to the inputs of the AND gates. Figure 5-22 shows one such AC reg-
ister stage (with the OR gates removed). The input is labeled Ii and the

168 CHAPTER FIVE Basic Computer Organization and Design

FA

AND (Output of OR gate in fig. 5-20)
LD

Ii (Fig. 2-11)
ADD

DR

From
INPR
bit(i)

DR (i) AC (i)

INPR

COM

SHR

SHL

Clock

J Q

K

Ci

Ci � 1

AC (i � 1)

AC (i � 1)

AC (i

Figure 5-22 One stage of adder and logic circuit.

Chapter05.qxd 2/2/2007 6:25 PM Page 168

EON
PreMedia

CONFIRMING PGS

5-1. A computer uses a memory unit with 256K words of 32 bits each. A binary
instruction code is stored in one word of memory. The instruction has four parts:
an indirect bit, an operation code, a register code part to specify one of 64 reg-
isters, and an address part.
a. How many bits are there in the operation code, the register code part, and

the address part?
b. Draw the instruction word format and indicate the number of bits in each

part.
c. How many bits are there in the data and address inputs of the memory?

5-2. What is the difference between a direct and an indirect address instruction?
How many references to memory are needed for each type of instruction to
bring an operand into a processor register?

5-3. The following control inputs are active in the bus system shown in Fig. 5-4. For
each case, specify the register transfer that will be executed during the next clock
transition.

5-4. The following register transfers are to be executed in the system of Fig. 5-4. For
each transfer, specify: (1) the binary value that must be applied to bus select

S2 S1 S0 LD of register Memory Adder

a. 1 1 1 IR Read —
b. 1 1 0 PC — —
c. 1 0 0 DR Write —
d. 0 0 0 AC — Add

SECTION 5-10 Design of Accumulator Logic 169

PROBLEMS

output AC (i). When the LD input is enabled, the 16 inputs Ii for i � 0, 1,
2, . . . , 15 are transferred to AC (0–15).

One stage of the adder and logic circuit consists of seven AND gates, one
OR gate and a full-adder (FA), as shown in Fig. 5-22. The inputs of the gates
with symbolic names come from the outputs of gates marked with the same
symbolic name in Fig. 5-21. For example, the input marked ADD in Fig. 5-21
is connected to the output marked ADD in Fig. 5-21.

The AND operation is achieved by ANDing AC (i) with the correspon-
ding bit in the data register DR (i). The ADD operation is obtained using a
binary adder similar to the one shown in Fig. 4-6. One stage of the adder uses
a full-adder with the corresponding input and output carries. The transfer from
INPR to AC is only for bits 0 through 7. The complement microoperation is
obtained by inverting the bit value in AC. The shift-right operation transfers the
bit from AC (i + 1), and the shift-left operation transfers the bit from AC (i � 1).
The complete adder and logic circuit consists of 16 stages connected together.

Chapter05.qxd 2/2/2007 6:25 PM Page 169

EON
PreMedia

CONFIRMING PGS

inputs S2, S1, and S0; (2) the register whose LD control input must be active
(if any); (3) a memory read or write operation (if needed); and (4) the operation
in the adder and logic circuit (if any).
a. AR ← PC
b. IR ← M [AR]
c. M [AR] ← TR
d. AC ← DR , DR ← AC (done simultaneously)

5-5. Explain why each of the following microoperations cannot be executed during
a single clock pulse in the system shown in Fig. 5-4. Specify a sequence
of microoperations that will perform the operation.
a. IR ← M [PC]
b. AC ← AC � TR
c. DR ← DR � AC (AC does not change)

5-6. Consider the instruction formats of the basic computer shown in Fig. 5-5 and the
list of instructions given in Table 5-2. For each of the following 16-bit instruc-
tions, give the equivalent four-digit hexadecimal code and explain in your own
words what it is that the instruction is going to perform.

a. 0001 0000 0010 0100
b. 1011 0001 0010 0100
c. 0111 0000 0010 0000

5-7. What are the two instructions needed in the basic computer in order to set the
E flip-flop to 1?

5-8. Draw a timing diagram similar to Fig. 5-7 assuming that SC is cleared to 0 at time
T3 if control signal C7 is active.

C7T3: SC → 0

C7 is activated with the positive clock transition associated with T1.

5-9. The content of AC in the basic computer is hexadecimal A937 and the initial
value of E is 1. Determine the contents of AC, E, PC, AR , and IR in hexadecimal
after the execution of the CLA instruction. Repeat 11 more times, starting from
each one of the register-reference instructions. The initial value of PC is hexa-
decimal 021.

5-10. An instruction at address 021 in the basic computer has I � 0, an operation code
of the AND instruction, and an address part equal to 083 (all numbers are in
hexadecimal). The memory word at address 083 contains the operand B8F2 and
the content of AC is A937. Go over the instruction cycle and determine the con-
tents of the following registers at the end of the execute phase: PC, AR , DR , AC,
and IR. Repeat the problem six more times starting with an operation code of
another memory-reference instruction.

5-11. Show the contents in hexadecimal of registers PC, AR , DR , IR , and SC of the
basic computer when an ISZ indirect instruction is fetched from memory and
executed. The initial content of PC is 7FF. The content of memory at address
7FF is EA9F. The content of memory at address A9F is 0C35. The content of
memory at address C35 is FFFF. Give the answer in a table with five columns,
one for each register and a row for each timing signal. Show the contents of the
registers after the positive transition of each clock pulse.

170 CHAPTER FIVE Basic Computer Organization and Design

Chapter05.qxd 2/2/2007 6:25 PM Page 170

EON
PreMedia

CONFIRMING PGS

5-12. The content of PC in the basic computer is 3AF (all numbers are in hexadeci-
mal). The content of AC is 7EC3. The content of memory at address 3AF is
932E. The content of memory at address 32E is 09AC. The content of memory
at address 9AC is 8B9F.
a. What is the instruction that will be fetched and executed next?
b. Show the binary operation that will be performed in the AC when the instruc-

tion is executed.
c. Give the contents of registers PC, AR , DR , AC, and IR in hexadecimal and

the values of E, I, and the sequence counter SC in binary at the end of the
instruction cycle.

5-13. Assume that the first six memory-reference instructions in the basic computer
listed in Table 5-4 are to be changed to the instructions specified in the following
table. EA is the effective address that resides in AR during time T4. Assume that
the adder and logic circuit in Fig. 5-4 can perform the exclusive-OR operation
AC ← AC � DR. Assume further that the adder and logic circuit cannot perform
subtraction directly. The subtraction must be done using the 2’s complement of
the subtrahend by complementing and incrementing AC. Give the sequence of
register transfer statements needed to execute each of the listed instructions start-
ing from timing T4. Note that the value in AC should not change unless the
instruction specifies a change in its content. You can use TR to store the content
of AC temporary or you can exchange DR and AC.

SECTION 5-10 Design of Accumulator Logic 171

Symbol Opcode Symbolic designation Description in words

XOR 000 AC ← AC � M [EA] Exclusive-OR to AC
ADM 001 M[EA] ← M [EA] � AC Add AC to memory
SUB 010 AC ← AC � M [EA] Subtract memory from AC
XCH 011 AC ← M [EA], M [EA] ← AC Exchange AC and memory
SEQ 100 If (M [EA] � AC) then Skip on equal

(PC ← PC � 1)
BPA 101 If (AC > 0) then (PC ← EA) Branch if AC positive and

non-zero

5-14. Make the following changes to the basic computer.
1. Add a register to the bus system CTR (count register) to be selected with

S2S1S0 � 000.
2. Replace the ISZ instruction with an instruction that loads a number into

CTR.

LDC Address CTR ← M [Address]

3. Add a register reference instruction ICSZ: Increment CTR and skip next
instruction if zero. Discuss the advantage of this change.

5-15. The memory unit of the basic computer shown in Fig. 5-3 is to be changed to a
65,536 � 16 memory, requiring an address of 16 bits. The instruction format of
a memory-reference instruction shown in Fig. 5-5(a) remains the same for I � 1
(indirect address) with the address part of the instruction residing in positions 0
through 11. But when I � 0 (direct address), the address of the instruction is

Chapter05.qxd 2/2/2007 6:25 PM Page 171

EON
PreMedia

CONFIRMING PGS

given by the 16 bits in the next word following the instruction. Modify the
microoperarions during time T2, T3, (and T4 if necessary) to conform with this
configuration.

5-16. A computer uses a memory of 65,536 words with eight bits in each word. It has
the following registers: PC, AR , TR (16 bits each), and AC, DR , IR (eight bits
each). A memory-reference instruction consists of three words: an 8-bit opera-
tion-code (one word) and a 16-bit address (in the next two words). All operands
are eight bits. There is no indirect bit.
a. Draw a block diagram of the computer showing the memory and registers as

in Fig. 5-3. (Do not use a common bus).
b. Draw a diagram showing the placement in memory of a typical three-word

instruction and the corresponding 8-bit operand.
c. List the sequence of microoperations for fetching a memory reference instruc-

tion and then placing the operand in DR. Start from timing signal T0.

5-17. A digital computer has a memory unit with a capacity of 16,384 words, 40 bits
per word. The instruction code format consists of six bits for the operation part
and 14 bits for the address part (no indirect mode bit). Two instructions are
packed in one memory word, and a 40-bit instruction register IR is available in
the control unit. Formulate a procedure for fetching and executing instructions
for this computer.

5-18. An output program resides in memory starting from address 2300. It is executed
after the computer recognizes an interrupt when FGO becomes a 1 (while
IEN � 1).
a. What instruction must be placed at address 1?
b. What must be the last two instructions of the output program?

5-19. The register transfer statements for a register R and the memory in a computer
are as follows (the X ’ s are control functions that occur at random):

X3�X1: R ← M [AR] Read memory word into R

X1�X2: R ← AC Transfer AC to R

X1�X3: M [AR] ← R Write R to memory

The memory has data inputs, data outputs, address inputs, and control inputs to
read and write as in Fig. 2-12. Draw the hardware implementation of R and the
memory in block diagram form. Show how the control functions X1 through X3

select the load control input of R , the select inputs of multiplexers that you
include in the diagram, and the read and write inputs of the memory.

5-20. The operations to be performed with a flip-flop F (not used in the basic com-
puter) are specified by the following register transfer statements:

xT3: F ← 1 Set F to 1

yT1: F ← 0 Clear F to 0

zT2: F ← F— Complement F

wT5: F ← G Transfer value of G to F

Otherwise, the content of F must not change. Draw the logic diagram showing
the connections of the gates that form the control functions and the inputs of flip-
flop F. Use a JK flip-flop and minimize the number of gates.

172 CHAPTER FIVE Basic Computer Organization and Design

Chapter05.qxd 2/2/2007 6:25 PM Page 172

EON
PreMedia

CONFIRMING PGS

5-21. Derive the control gates associated with the program counter PC in the basic
computer.

5-22. Derive the control gates for the write input of the memory in the basic computer.

5-23. Show the complete logic of the interrupt flip-flops R in the basic computer. Use
a JK flip-flop and minimize the number of gates.

5-24. Derive the Boolean logic expression for x2 (see Table 5-7). Show that x2 can be
generated with one AND gate and one OR gate.

5-25. Derive the Boolean expression for the gate structure that clears the sequence
counter SC to 0. Draw the logic diagram of the gates and show how the output
is connected to the INR and CLR inputs of SC (see Fig. 5-6). Minimize the
number of gates.

SECTION 5-10 Design of Accumulator Logic 173

REFERENCES

1. Bell, C. G., J. C. Mudge, and J. E. McNamara, Computer Engineering. Bedford, MA:
Digital Press, 1980.

2. Booth, T. L., Introduction to Computer Engineering, 3rd ed. New York: John Wiley, 1984.

3. Gibson, G. A., Computer’ Systems Concepts and Design. Englewood Cliffs, NJ: Prentice
Hall, 1991.

4. Gray, N. A. B., Introduction to Computer Systems. Englewood Cliffs, NJ: Prentice Hall,
1987.

5. Hill, F. J., and G. R. Peterson, Digital Systems: Hardware Organization and Design, 3rd ed.
New York: John Wiley, 1987.

6. Lewin, M. H. Logic Design and Computer Organization. Reading, MA: Addison-Wesley,
1983.

7. Mano, M. M., Computer Engineering: Hardware Design. Englewood Cliffs, NJ: Prentice
Hall, 1988.

8. Patterson, D. A. and J. L. Hennessy, Computer Architecture: A Quantitative Approach. San
Mateo, CA: Morgan Kaufmann Publishers, 1990.

9. Prosser, F. P., and D. E. Winkel, The Art of Digital Design, 2nd ed. Englewood Cliffs, NJ:
Prentice Hall, 1987.

10. Shiva, S. G., Computer Design and Architecture. 2nd ed. New York: HarperCollins
Publishers, 1991.

Chapter05.qxd 2/2/2007 6:25 PM Page 173

EON
PreMedia

CONFIRMING PGS

Chapter05.qxd 2/2/2007 6:25 PM Page 174

EON
PreMedia

CONFIRMING PGS

IN THIS CHAPTER

6-1 Introduction
6-2 Machine Language
6-3 Assembly Language
6-4 The Assembler
6-5 Program Loops
6-6 Programming Arithmetic and Logic Operations
6-7 Subroutines
6-8 Input–Output Programming

6-1 Introduction
A total computer system includes both hardware and software. Hardware con-
sists of the physical components and all associated equipment. Software
refers to the programs that are written for the computer. It is possible to be
familiar with various aspects of computer software without being concerned
with details of how the computer hardware operates. It is also possible to
design parts of the hardware without a knowledge of its software capabilities.
However, those concerned with computer architecture should have a
knowledge of both hardware and software because the two branches influ-
ence each other.

Writing a program for a computer consists of specifying, directly or indi-
rectly, a sequence of machine instructions. Machine instructions inside the
computer form a binary pattern which is difficult, if not impossible, for people
to work with and understand. It is preferable to write programs with the more
familiar symbols of the alphanumeric character set. As a consequence, there is
a need for translating user-oriented symbolic programs into binary programs
recognized by the hardware.

175

C H A P T E R S I X

Programming
the Basic Computer

Chapter06.qxd 2/2/2007 6:29 PM Page 175

EON
PreMedia

CONFIRMING PGS

A program written by a user may be either dependent or independent of
the physical computer that runs his program. For example, a program written
in standard Fortran is machine independent because most computers provide
a translator program that converts the standard Fortran program to the binary
code of the computer available in the particular installation. But the translator
program itself is machine dependent because it must translate the Fortran pro-
gram to the binary code recognized by the hardware of the particular computer
used.

This chapter introduces some elementary programming concepts and
shows their relation to the hardware representation of instructions. The first
part presents the basic operation and structure of a program that translates a
user’s symbolic program into an equivalent binary program. The discussion
emphasizes the important concepts of the translator rather than the details of
actually producing the program itself. The usefulness of various machine
instructions is then demonstrated by means of several basic programming
examples.

The instruction set of the basic computer, whose hardware organization
was explored in Chap. 5, is used in this chapter to illustrate many of the tech-
niques commonly used to program a computer. In this way it is possible to
explore the relationship between a program and the hardware operations that
execute the instructions.

The 25 instructions of the basic computer are repeated in Table 6-1 to
provide an easy reference for the programming examples that follow. Each
instruction is assigned a three-letter symbol to facilitate writing symbolic
programs. The first seven instructions are memory-reference instructions and
the other 18 are register-reference and input–output instructions. A memory-
reference instruction has three parts: a mode bit, an operation code of three
bits, and a 12-bit address. The first hexadecimal digit of a memory-reference
instruction includes the mode bit and the operation code. The other three dig-
its specify the address. In an indirect address instruction the mode bit is 1 and
the first hexadecimal digit ranges in value from 8 to E. In a direct mode, the
range is from 0 to 6. The other 18 instructions have a 16-bit operation code.
The code for each instruction is listed as a four-digit hexadecimal number. The
first digit of a register-reference instruction is always 7. The first digit of an
input–output instruction is always F. The symbol m used in the description
column denotes the effective address. The letter M refers to the memory word
(operand) found at the effective address.

6-2 Machine Language
A program is a list of instructions or statements for directing the computer to
perform a required data-processing task. There are various types of program-
ming languages that one may write for a computer, but the computer can execute
programs only when they are represented internally in binary for Programs

176 CHAPTER SIX Programming the Basic Computer

instruction set

Chapter06.qxd 2/2/2007 6:29 PM Page 176

EON
PreMedia

CONFIRMING PGS

written in any other language must be translated to the binary representation
of instructions before they can be executed by the computer. Programs writ-
ten for a computer may be in one of the following categories:

1. Binary code. This is a sequence of instructions and operands in binary
that list the exact representation of instructions as they appear in com-
puter memory.

2. Octal or hexadecimal code. This is an equivalent translation of the binary
code to octal or hexadecimal representation.

3. Symbolic code. The user employs symbols (letters, numerals, or special
characters) for the operation part, the address part, and other parts
of the instruction code. Each symbolic instruction can be translated
into one binary coded instruction. This translation is done by a spe-
cial program called an assembler. Because an assembler translates the

SECTION 6-2 Machine Language 177

TABLE 6-1 Computer Instructions

Hexadecimal
Symbol code Description

AND 0 or 8 AND M to AC
ADD 1 or 9 Add M to AC, carry to E
LDA 2 or A Load AC from M
STA 3 or B Store AC in M
BUN 4 or C Branch unconditionally to m
BSA 5 or D Save return address in m and branch to m � 1
ISZ 6 or E Increment M and skip if zero

CLA 7800 Clear AC
CLE 7400 Clear E
CMA 7200 Complement AC
CME 7100 Complement E
CIR 7080 Circulate right E and AC
CIL 7040 Circulate left E and AC
INC 7020 Increment AC,
SPA 7010 Skip if AC is positive
SNA 7008 Skip if AC is negative
SZA 7004 Skip if AC is zero
SZE 7002 Skip if E is zero
HLT 7001 Halt computer
INP F800 Input information and clear flag
OUT F400 Output information and clear flag
SKI F200 Skip if input flag is on
SKO F100 Skip if output flag is on
ION F080 Turn interrupt on
IOF F040 Turn interrupt off

Chapter06.qxd 2/2/2007 6:29 PM Page 177

EON
PreMedia

CONFIRMING PGS

symbols, this type of symbolic program is referred to as an assembly
language program.

4. High-level programming languages. These are special languages developed
to reflect the procedures used in the solution of a problem rather than
be concerned with the computer hardware behavior. An example of
a high-level programming language is Fortran. It employs problem-
oriented symbols and formats. The program is written in a sequence of
statements in a form that people prefer to think in when solving a prob-
lem. However, each statement must be translated into a sequence of
binary instructions before the program can be executed in a computer.
The program that translates a high-level language program to binary is
called a compiler.

Strictly speaking, a machine language program is a binary program of cat-
egory 1. Because of the simple equivalency between binary and octal or hexa-
decimal representation, it is customary to refer to category 2 as machine
language. Because of the one-to-one relationship between a symbolic instruc-
tion and its binary equivalent, an assembly language is considered to be a
machine-level language.

We now use the basic computer to illustrate the relation between binary
and assembly languages. Consider the binary program listed in Table 6-2. The
first column gives the memory location (in binary) of each instruction or
operand. The second column lists the binary content of these memory loca-
tions. (The location is the address of the memory word where the instruction is
stored. It is important to differentiate it from the address part of the instruction
itself.) The program can be stored in the indicated portion of memory, and
then executed by the computer starting from address 0. The hardware of the
computer will execute these instructions and perform the intended task.
However, a person looking at this program will have a difficult time under-
standing what is to be achieved when this program is executed. Nevertheless,
the computer hardware recognizes only this type of instruction code.

178 CHAPTER SIX Programming the Basic Computer

machine language

assembly language

TABLE 6-2 Binary Program to Add Two Numbers

Location Instruction code

0 0010 0000 0000 0100
1 0001 0000 0000 0101

10 0011 0000 0000 0110
11 0111 0000 0000 0001

100 0000 0000 0101 0011
101 1111 1111 1110 1001
110 0000 0000 0000 0000

Chapter06.qxd 2/2/2007 6:29 PM Page 178

EON
PreMedia

CONFIRMING PGS

Writing 16 bits for each instruction is tedious because there are too many
digits. We can reduce the number of digits per instruction if we write the octal
equivalent of the binary code. This will require six digits per instruction. On
the other hand, we can reduce each instruction to four digits if we write the
equivalent hexadecimal code as shown in Table 6-3. The hexadecimal repre-
sentation is convenient to use; however, one must realize that each hexadeci-
mal digit must be converted to its equivalent 4-bit number when the program
is entered into the computer. The advantage of writing binary programs in
equivalent octal or hexadecimal form should be evident from this example.

The program in Table 6-4 uses the symbolic names of instructions (listed
in Table 6-1) instead of their binary or hexadecimal equivalent. The address
parts of memory-reference instructions, as well as operands, remain in their
hexadecimal value. Note that location 005 has a negative operand because
the sign bit in the leftmost position is 1. The inclusion of a column for com-
ments provides some means for explaining the function of each instruction.
Symbolic programs are easier to handle, and as a consequence, it is preferable
to write programs with symbols. These symbols can be converted to their
binary code equivalent to produce the binary program.

We can go one step further and replace each hexadecimal address by a
symbolic address and each hexadecimal operand by a decimal operand. This

SECTION 6-2 Machine Language 179

hexadecimal code

TABLE 6-3 Hexadecimal Program to Add Two Numbers

Location Instruction

000 2004
001 1005
002 3006
003 7001
004 0053
005 FFE9
006 0000

TABLE 6-4 Program with Symbolic Operation Codes

Location Instruction Comments

000 LDA 004 Load first operand into AC
001 ADD 005 Add second operand to AC
002 STA 006 Store sum in location 006
003 HLT Halt computer
004 0053 First operand
005 FFE9 Second operand (negative)
006 0000 Store sum here

Chapter06.qxd 2/2/2007 6:29 PM Page 179

EON
PreMedia

CONFIRMING PGS

is convenient because one usually does not know exactly the numeric mem-
ory location of operands while writing a program. If the operands are placed
in memory following the instructions, and if the length of the program is not
known in advance, the numerical location of operands is not known until the
end of the program is reached. In addition, decimal numbers are more famil-
iar than their hexadecimal equivalents.

The program in Table 6-5 is the assembly-language program for adding
two numbers. The symbol ORG followed by a number is not a machine
instruction. Its purpose is to specify an origin, that is, the memory location of
the next instruction below it. The next three lines have symbolic addresses.
Their value is specified by their being present as a label in the first column.
Decimal operands are specified following the symbol DEC. The numbers may
be positive or negative, but if negative, they must be converted to binary in
the signed-2’s complement representation. The last line has the symbol END
indicating the end of the program. The symbols ORG, DEC, and END, called
pseudoinstructions, are defined in the next section. Note that all comments are
preceded by a slash.

The equivalent Fortran program for adding two integer numbers is listed
in Table 6-6. The two values for A and B may be specified by an input statement
or by a data statement. The arithmetic operation for the two numbers is speci-
fied by one simple statement. The translation of this Fortran program into a
binary program consists of assigning three memory locations, one each for the
augend, addend, and sum, and then deriving the sequence of binary instructions
that form the sum. Thus a compiler program, translates the symbols of the
Fortran program into the binary values listed in the program of Table 6-2.

180 CHAPTER SIX Programming the Basic Computer

TABLE 6-5 Assembly Language Program to Add Two Numbers

ORG 0 /Origin of program is location 0
LDA A /Load operand from location A
ADD B /Add operand from location B
STA C /Store sum in location C
HLT /Halt computer

A, DEC 83 /Decimal operand
B, DEC �23 /Decimal operand
C, DEC 0 /Sum stored in location C

END /End of symbolic program

TABLE 6-6 Fortran Program to Add Two Numbers

INTEGER A, B, C
DATA A, 83 B, �23
C � A � B
END

Chapter06.qxd 2/2/2007 6:29 PM Page 180

EON
PreMedia

CONFIRMING PGS

6-3 Assembly Language
A programming language is defined by a set of rules. Users must conform with
all format rules of the language if they want their programs to be translated
correctly. Almost every commercial computer has its own particular assembly-
language. The rules for writing assembly language programs are documented
and published in manuals which are usually available from the computer
manufacturer.

The basic unit of an assembly language program is a line of code. The
specific language is defined by a set of rules that specify the symbols that can
be used and how they may be combined to form a line of code. We will now
formulate the rules of an assembly language for writing symbolic programs for
the basic computer.

The following are the requirements for an effective assembly language
programming:

Programming model of the processor, complete instruction set details of
the processor, memory map and I/O map of the computer system, and com-
plete details of the assembler including rules of the language. Programming
model specifies the program accessible registers. The assembler converts the
assembly language into machine language for execution.

Rules of the Language
Each line of an assembly language program is arranged in three columns
called fields. The fields specify the following information.

1. The label field may be empty or it may specify a symbolic address.
2. The instruction field specifies a machine instruction or a pseudoin-

struction.
3. The comment field may be empty or it may include a comment.

A symbolic address consists of one, two, or three, but not more than
three alphanumeric characters. The first character must be a letter; the next
two may be letters or numerals. The symbol can be chosen arbitrarily by the
programmer. A symbolic address in the label field is terminated by a comma
so that it will be recognized as a label by the assembler.

The instruction field in an assembly language program may specify one
of the following items:

1. A memory-reference instruction (MRI)
2. A register-reference or input–output instruction (non-MRI)
3. A pseudoinstruction with or without an operand

SECTION 6-3 Assembly Language 181

symbolic address

Chapter06.qxd 2/2/2007 6:29 PM Page 181

EON
PreMedia

CONFIRMING PGS

A memory-reference instruction occupies two or three symbols sepa-
rated by spaces. The first must be a three-letter symbol defining an MRI oper-
ation code from Table 6-1. The second is a symbolic address. The third
symbol, which may or may not be present, is the letter I. If I is missing, the
line denotes a direct address instruction. The presence of the symbol I denotes
an indirect address instruction.

A non-MRI is defined as an instruction that does not have an address
part. A non-MRI is recognized in the instruction field of a program by any one
of the three-letter symbols listed in Table 6-1 for the register-reference and
input–output instructions.

The following is an illustration of the symbols that may be placed in the
instruction field of a program.

CLA non-MRI
ADD OPR direct address MRI
ADD PTR I indirect address MRI

The first three-letter symbol in each line must be one of the instruction sym-
bols of the computer and must be listed in Table 6-1. A memory-reference
instruction, such as ADD, must be followed by a symbolic address. The letter
I may or may not be present.

A symbolic address in the instruction field specifies the memory location
of an operand. This location must be defined somewhere in the program by
appearing again as a label in the first column. To be able to translate an assem-
bly language program to a binary program, it is absolutely necessary that each
symbolic address that is mentioned in the instruction field must occur again in
the label field.

A pseudoinstruction is not a machine instruction but rather an instruction
to the assembler giving information about some phase of the translation. Four
pseudoinstructions that are recognized by the assembler are listed in Table 6-7.
(Other assembly language programs recognize many more pseudoinstruc-
tions.) The ORG (origin) pseudoinstruction informs the assembler that the
instruction or operand in the following line is to be placed in a memory loca-
tion specified by the number next to ORG. It is possible to use ORG more
than once in a program to specify more than one segment of memory. The

182 CHAPTER SIX Programming the Basic Computer

pseudoinstruction

TABLE 6-7 Definition of Pseudoinstructions

Symbol Information for the Assembler

ORG N Hexadecimal number N is the memory location for the instruction or
operand listed in the following line

END Denotes the end of symbolic program
DEC N Signed decimal number N to be converted to binary
HEX N Hexadecimal number N to be converted to binary

Chapter06.qxd 2/2/2007 6:29 PM Page 182

EON
PreMedia

CONFIRMING PGS

END symbol is placed at the end of the program to inform the assembler that
the program is terminated. The other two pseudoinstructions specify the radix
of the operand and tell the assembler how to convert the listed number to a
binary number.

The third field in a program is reserved for comments. A line of code
may or may not have a comment, but if it has, it must be preceded by a
slash for the assembler to recognize the beginning of a comment field.
Comments are useful for explaining the program and are helpful in under-
standing the step-by-step procedure taken by the program. Comments are
inserted for explanation purposes only and are neglected during the binary
translation process.

An Example
The program of Table 6-8 is an example of an assembly language program.
The first line has the pseudoinstruction ORG to define the origin of the pro-
gram at memory location (100)16. The next six lines define machine instruc-
tions, and the last four have pseudoinstructions. Three symbolic addresses
have been used and each is listed in column 1 as a label and in column 2 as
an address of a memory-reference instruction. Three of the pseudoinstructions
specify operands, and the last one signifies the END of the program.

When the program is translated into binary code and executed by the
computer it will perform a subtraction between two numbers. The subtraction
is performed by adding the minuend to the 2’s complement of the subtrahend.
The subtrahend is a negative number. It is converted into a binary number in
signed-2’s complement representation because we dictate that all negative
numbers be in their 2’s complement form. When the 2’s complement of the
subtrahend is taken (by complementing and incrementing the AC), �23 con-
verts to �23 and the difference is 83 � (2’s complement of �23) � 83 �
23 � 106.

SECTION 6-3 Assembly Language 183

TABLE 6-8 Assembly Language Program to Subtract Two Numbers

ORG 100 /Origin of program is location 100
LDA SUB /Load subtrahend to AC
CMA /Complement AC
INC /Increment AC
ADD MIN /Add minuend to AC
STA DIF /Store difference
HLT /Halt computer

MIN, DEC 83 /Minuend
SUB, DEC �23 /Subtrahend
DIF, HEX 0 /Difference stored here

END /End of symbolic program

Chapter06.qxd 2/2/2007 6:29 PM Page 183

EON
PreMedia

CONFIRMING PGS

Translation to Binary
The translation of the symbolic program into binary is done by a special pro-
gram called an assembler. The tasks performed by the assembler will be better
understood if we first perform the translation on paper. The translation of the
symbolic program of Table 6-8 into an equivalent binary code may be done
by scanning the program and replacing the symbols by their machine code
binary equivalent. Starting from the first line, we encounter an ORG
pseudoinstruction. This tells us to start the binary program from hexadecimal
location 100. The second line has two symbols. It must be a memory-reference
instruction to be placed in location 100. Since the letter I is missing, the first
bit of the instruction code must be 0. The symbolic name of the operation is
LDA. Checking Table 6-1 we find that the first hexadecimal digit of the
instruction should be 2. The binary value of the address part must be obtained
from the address symbol SUB. We scan the label column and find this sym-
bol in line 9. To determine its hexadecimal value we note that line 2 contains
an instruction for location 100 and every other line specifies a machine instruc-
tion or an operand for sequential memory locations. Counting lines, we find
that label SUB in line 9 corresponds to memory location 107. So the hexa-
decimal address of the instruction LDA must be 107. When the two parts of
the instruction are assembled, we obtain the hexadecimal code 2107. The
other lines representing machine instructions are translated in a similar fash-
ion and their hexadecimal code is listed in Table 6-9.

Two lines in the symbolic program specify decimal operands with the
pseudoinstruction DEC. A third specifies a zero by means of a 1 HEX pseudo-
instruction (DEC could be used as well). Decimal 83 is converted to binary
and placed in location 106 in its hexadecimal equivalent. Decimal �23 is a
negative number and must be converted into binary in signed-2’s complement
form.

184 CHAPTER SIX Programming the Basic Computer

assembler

TABLE 6-9 Listing of Translated Program of Table 6-8

Hexadecimal code

Location Content Symbolic program

ORG 100
100 2107 LDA SUB
101 7200 CMA
102 7020 INC
103 1106 ADD MIN
104 3108 STA DIF
105 7001 HLT
106 0053 MIN, DEC 83
107 FFE9 SUB, DEC �23
108 0000 DIF, HEX 0

END

Chapter06.qxd 2/2/2007 6:29 PM Page 184

EON
PreMedia

CONFIRMING PGS

The hexadecimal equivalent of the binary number is placed in location 107.
The END symbol signals the end of the symbolic program telling us that there
are no more lines to translate.

The translation process can be simplified if we scan the entire symbolic
program twice. No translation is done during the first scan. We merely assign
a memory location to each machine instruction and operand. The location
assignment will define the address value of labels and facilitate the translation
process during the second scan. Thus in Table 6-9, we assign location 100 to
the first instruction after ORG. We then assign sequential locations for each
line of code that has a machine instruction or operand up to the end of the
program. (ORG and END are not assigned a numerical location because they
do not represent an instruction or an operand.) When the first scan is com-
pleted, we associate with each label its location number and form a table that
defines the hexadecimal value of each symbolic address. For this program, the
address symbol table is as follows:

During the second scan of the symbolic program we refer to the address
symbol table to determine the address value of a memory-reference instruc-
tion. For example, the line of code LDA SUB is translated during the second
scan by getting the hexadecimal value of LDA from Table 6-1 and the hexa-
decimal value of SUB from the address-symbol table listed above. We then
assemble the two parts into a four-digit hexadecimal instruction. The hexa-
decimal code can be easily converted to binary if we wish to know exactly
how this program resides in computer memory.

When the translation from symbols to binary is done by an assembler
program, the first scan is called the first pass, and the second is called the
second pass.

6-4 The Assembler
An assembler is a program that accepts a symbolic language program and pro-
duces its binary machine language equivalent. The input symbolic program is
called the source program and the resulting binary program is called the object
program. The assembler is a program that operates on character strings and
produces an equivalent binary interpretation.

Address symbol Hexadecimal address

MIN 106
SUB 107
DIF 108

SECTION 6-4 The Assembler 185

address symbol
table

Chapter06.qxd 2/2/2007 6:29 PM Page 185

EON
PreMedia

CONFIRMING PGS

Representation of Symbolic Program in Memory
Prior to starting the assembly process, the symbolic program must be stored
in memory. The user types the symbolic program on a terminal. A loader pro-
gram is used to input the characters of the symbolic program into memory.
Since the program consists of symbols, its representation in memory must use
an alphanumeric character code. In the basic computer, each character is rep-
resented by an 8-bit code. The high-order bit is always 0 and the other seven
bits are as specified by ASCII. The hexadecimal equivalent of the character
set is listed in Table 6-10. Each character is assigned two hexadecimal digits
which can be easily converted to their equivalent 8-bit code. The last entry in
the table does not print a character but is associated with the physical move-
ment of the cursor in the terminal. The code for CR is produced when the
return key is depressed. This causes the “carriage” to return to its initial posi-
tion to start typing a new line. The assembler recognizes a CR code as the end
of a line of code.

A line of code is stored in consecutive memory locations with two char-
acters in each location. Two characters can be stored in each word since a
memory word has a capacity of 16 bits. A label symbol is terminated with a
comma. Operation and address symbols are terminated with a space and the
end of the line is recognized by the CR code. For example, the following line
of code:

PL3, LDA SUB I

186 CHAPTER SIX Programming the Basic Computer

line of code

TABLE 6-10 Hexadecimal Character Code

Character Code Character Code Character Code

A 41 Q 51 6 36
B 42 R 52 7 37
C 43 S 53 8 38
D 44 T 54 9 39
E 45 U 55 space 20
F 46 V 56 (28
G 47 W 57) 29
H 48 X 58 * 2A
I 49 Y 59 � 2B
J 4A Z 5A , 2C
K 4B 0 30 � 2D
L 4C 1 31 . 2E
M 4D 2 32 / 2F
N 4E 3 33 � 3D
O 4F 4 34 CR 0D (carriage
P 50 5 35 return)

Chapter06.qxd 2/2/2007 6:29 PM Page 186

EON
PreMedia

CONFIRMING PGS

is stored in seven consecutive memory locations, as shown in Table 6-11. The
label PL3 occupies two words and is terminated by the code for comma (2C).
The instruction field in the line of code may have one or more symbols. Each
symbol is terminated by the code for space (20) except for the last symbol,
which is terminated by the code of carriage return (0D). If the line of code has
a comment, the assembler recognizes it by the code for a slash (2F). The
assembler neglects all characters in the comment field and keeps checking for
a CR code. When this code is encountered, it replaces the space code after the
last symbol in the line of code.

The input for the assembler program is the user’s symbolic language pro-
gram in ASCII. This input is scanned by the assembler twice to produce the
equivalent binary program. The binary program constitutes the output gener-
ated by the assembler. We will now describe briefly the major tasks that must
be performed by the assembler during the translation process.

First Pass
A two-pass assembler scans the entire symbolic program twice. During the
first pass, it generates a table that correlates all user-defined address symbols
with their binary equivalent value. The binary translation is done during the
second pass. To keep track of the location of instructions, the assembler uses a
memory word called a location counter (abbreviated LC). The content of LC
stores the value of the memory location assigned to the instruction or operand
presently being processed. The ORG pseudoinstruction initializes the location
counter to the value of the first location. Since instructions are stored in
sequential locations, the content of LC is incremented by 1 after processing
each line of code. To avoid ambiguity in case ORG is missing, the assembler
sets the location counter to 0 initially.

The tasks performed by the assembler during the first pass are described
in the flowchart of Fig. 6-1. LC is initially set to 0. A line of symbolic code is
analyzed to determine if it has a label (by the presence of a comma). If the line

SECTION 6-4 The Assembler 187

location counter
(LC)

TABLE 6-11 Computer Representation of the Line of Code: PL3, LDA SUB I

Memory Hexadecimal
word Symbol code Binary representation

1 P L 50 4C 0101 0000 0100 1100
2 3 , 33 2C 0011 0011 0010 1100
3 L D 4C 44 0100 1100 0100 0100
4 A 41 20 0100 0001 0010 0000
5 S U 53 55 0101 0011 0101 0101
6 B 42 20 0100 0010 0010 0000
7 I CR 49 0D 0100 1001 0000 1101

Chapter06.qxd 2/2/2007 6:29 PM Page 187

EON
PreMedia

CONFIRMING PGS

of code has no label, the assembler checks the symbol in the instruction field.
If it contains an ORG pseudoinstruction, the assembler sets LC to the number
that follows ORG and goes back to process the next line. If the line has an
END pseudoinstruction, the assembler terminates the first pass and goes to the
second pass. (Note that a line with ORG or END should not have a label.) If
the line of code contains a label, it is stored in the address symbol table
together with its binary equivalent number specified by the content of LC.
Nothing is stored in the table if no label is encountered. LC is then incre-
mented by 1 and a new line of code is processed.

For the program of Table 6-8, the assembler generates the address sym-
bol table listed in Table 6-12. Each label symbol is stored in two memory loca-
tions and is terminated by a comma. If the label contains less than three
characters, the memory locations are filled with the code for space. The value
found in LC while the line was processed is stored in the next sequential mem-
ory location. The program has three symbolic addresses: MIN, SUB, and
DIF. These symbols represent 12-bit addresses equivalent to hexadecimal 106,

188 CHAPTER SIX Programming the Basic Computer

First pass

Scan next line of code

Store symbol
in address-

symbol table
together with
value of LC

Increment LC

no

yes

no

yes

yes

no Go to
second

pass

LC ← 0

Set LC

Label ORG

END

Figure 6-1 Flowchart for first pass of assembler.

Chapter06.qxd 2/2/2007 6:29 PM Page 188

EON
PreMedia

CONFIRMING PGS

107, and 108, respectively. The address symbol table occupies three words for
each label symbol encountered and constitutes the output data that the assem-
bler generates during the first pass.

Second Pass
Machine instructions are translated during the second pass by means of table-
lookup procedures. A table-lookup procedure is a search of table entries to
determine whether a specific item matches one of the items stored in the table.
The assembler uses four tables. Any symbol that is encountered in the program
must be available as an entry in one of these tables; otherwise, the symbol can-
not be interpreted. We assign the following names to the four tables:

1. Pseudoinstruction table.
2. MRI table.
3. Non-MRI table.
4. Address symbol table.

The entries of the pseudoinstruction table are the four symbols ORG,
END, DEC, and HEX. Each entry refers the assembler to a subroutine that
processes the pseudoinstruction when encountered in the program. The MRI
table contains the seven symbols of the memory-reference instructions and
their 3-bit operation code equivalent. The non-MRI table contains the symbols
for the 18 register-reference and input–output instructions and their 16-bit
binary code equivalent. The address symbol table is generated during the first
pass of the assembly process. The assembler searches these tables to find the
symbol that it is currently processing in order to determine its binary value.

SECTION 6-4 The Assembler 189

table-lookup

TABLE 6-12 Address Symbol Table for Program in Table 6-8

Memory Symbol Hexadecimal
word or (LC)* code Binary representation

1 M I 4D 49 0100 1101 0100 1001
2 N , 4E 2C 0100 1110 0010 1100
3 (LC) 01 06 0000 0001 0000 0110
4 S U 53 55 0101 0011 0101 0101
5 B , 42 2C 0100 0010 0010 1100
6 (LC) 01 07 0000 0001 0000 0111
7 D I 44 49 0100 0100 0100 1001
8 F , 46 2C 0100 0110 0010 1100
9 (LC) 01 08 0000 0001 0000 1000

* (LC) designates content of location counter.

Chapter06.qxd 2/2/2007 6:29 PM Page 189

EON
PreMedia

CONFIRMING PGS

The tasks performed by the assembler during the second pass are
described in the flowchart of Fig. 6-2. LC is initially set to 0. Lines of code are
then analyzed one at a time. Labels are neglected during the second pass,
so the assembler goes immediately to the instruction field and proceeds
to check the first symbol encountered. It first checks the pseudoinstruction
table. A match with ORG sends the assembler to a subroutine that sets LC to
an initial value. A match with END terminates the translation process. An
operand pseudoinstruction causes a conversion of the operand into binary.
This operand is placed in the memory location specified by the content of LC.
The location counter is then incremented by 1 and the assembler continues to
analyze the next line of code.

If the symbol encountered is not a pseudoinstruction, the assembler
refers to the MRI table. If the symbol is not found in this table, the assembler
refers to the non-MRI table. A symbol found in the non-MRI table corre-
sponds to a register reference or input–output instruction. The assembler
stores the 16-bit instruction code into the memory word specified by LC. The
location counter is incremented and a new line analyzed.

When a symbol is found in the MRI table, the assembler extracts its
equivalent 3-bit code and inserts it in bits 2 through 4 of a word. A memory
reference instruction is specified by two or three symbols. The second symbol
is a symbolic address and the third, which may or may not be present, is the
letter I. The symbolic address is converted to binary by searching the address
symbol table. The first bit of the instruction is set to 0 or 1, depending on
whether the letter I is absent or present. The three parts of the binary instruc-
tion code are assembled and then stored in the memory location specified by
the content of LC. The location counter is incremented and the assembler
continues to process the next line.

One important task of an assembler is to check for possible errors in the
symbolic program. This is called error diagnostics. One such error may be an
invalid machine code symbol which is detected by its being absent in the MRI
and non-MRI tables. The assembler cannot translate such a symbol because it
does not know its binary equivalent value. In such a case, the assembler prints
an error message to inform the programmer that his symbolic program has an
error at a specific line of code. Another possible error may occur if the pro-
gram has a symbolic address that did not appear also as a label. The assem-
bler cannot translate the line of code properly because the binary equivalent
of the symbol will not be found in the address symbol table generated during
the first pass. Other errors may occur and a practical assembler should detect
all such errors and print an error message for each.

It should be emphasized that a practical assembler is much more com-
plicated than the one explained here. Most computers give the programmer
more flexibility in writing assembly language programs. For example, the user
may be allowed to use either a number or a symbol to specify an address. Many
assemblers allow the user to specify an address by an arithmetic expression.
Many more pseudoinstructions may be specified to facilitate the programming

190 CHAPTER SIX Programming the Basic Computer

error diagnostics

Chapter06.qxd 2/2/2007 6:29 PM Page 190

EON
PreMedia

CONFIRMING PGS

SECTION 6-4 The Assembler 191

Scan next line of code

Second pass

Pseudo-
instruction

Valid
non-MRI
instruction

Store binary
equivalent of
instruction
in location

given by LC

Error in
line of
code

Convert
operand
to binary

in location
given by LC

Get operation code
and set bits 2-4

MRI

LC ← 0

Set LC

Done

EndORG
Yes

Yes

Yes

Yes

Set
first

bit to 1

Set
first

bit to 0

Assembley all parts of
binary instruction and

store in location given by LC

Yes Yes
No

 No

No

No

I

No

No

DEC or HEX

Search address-
symbol table for
binary equivalent

of symbolic address
and set bits 5-16

Increment LC

Figure 6-2 Flowchart for second pass of assembler.

Chapter06.qxd 2/2/2007 6:29 PM Page 191

EON
PreMedia

CONFIRMING PGS

task. As the assembly language becomes more sophisticated, the assembler
becomes more complicated.

6-5 Program Loops
A program loop is a sequence of instructions that are executed many times,
each time with a different set of data. Program loops are specified in Fortran
by a DO statement. The following is an example of a Fortran program that
forms the sum of 100 integer numbers.

DIMENSION A(100)
INTEGER SUM, A
SUM � 0
DO 3 J � 1, 100

3 SUM � SUM � A(J)

Statement number 3 is executed 100 times, each time with a different operand
A(J) for J � 1, 2, . . . , 100.

A system program that translates a program written in a high-level pro-
gramming language such as the above to a machine language program is
called a compiler. A compiler is a more complicated program than an assem-
bler and requires knowledge of systems programming to fully understand its
operation. Nevertheless, we can demonstrate the basic functions of a com-
piler by going through the process of translating the program above to an
assembly language program. A compiler may use an assembly language as
an intermediate step in the translation or may translate the program directly
to binary.

The first statement in the Fortran program is a DIMENSION statement.
This statement instructs the compiler to reserve 100 words of memory for 100
operands. The value of the operands is determined from an input statement
(not listed in the program). The second statement informs the compiler that
the numbers are integers. If they were of the real type, the compiler would
have to reserve locations for floating-point numbers and generate instructions
that perform the subsequent arithmetic with floating-point data. These two
statements are nonexecutable and are similar to the pseudoinstructions in an
assembly language. Suppose that the compiler reserves locations (150)16 to
(1B3)16 for the 100 operands. These reserved memory words are listed in lines
19 to 118 in the translated program of Table 6-13. This is done by the ORG
pseudoinstruction in line 18, which specifies the origin of the operands. The
first and last operands are listed with a specific decimal number, although
these values are not known during compilation. The compiler just reserves the
data space in memory and the values are inserted later when an input data
statement is executed. The line numbers in the symbolic program are for ref-
erence only and are not part of the translated symbolic program.

192 CHAPTER SIX Programming the Basic Computer

compiler

Chapter06.qxd 2/2/2007 6:29 PM Page 192

EON
PreMedia

CONFIRMING PGS

The indexing of the DO statement is translated into Lhe instructions in
lines 2 through 5 and the constants in lines 13 through 16. The address of the
first operand (150) is stored in location ADS in line 13. The number of times
that Fortran statement number 3 must be executed is 100. So �100 is stored in
location NBR. The compiler then generates the instructions in lines 2 through
5 to initialize the program loop. The address of the first operand is transferred
to location PTR. This corresponds to setting A(J) to A(1). The number �100
is then transferred to location CTR. This location acts as a counter with its
content incremented by one every time the program loop is executed. When
the value of the counter reaches zero, the 100 operations will be completed
and the program will exit from the loop.

Some compilers will translate the statement SUM � 0 into a machine
instruction that initializes location SUM to zero. A reference to this location is
then made every time Fortran statement number 3 is executed. A more intel-
ligent compiler will realize that the sum can be formed in the accumulator and
only the final result stored in location SUM. This compiler will produce an
instruction in line 6 to clear the AC. It will also reserve a memory location

SECTION 6-5 Program Loops 193

TABLE 6-13 Symbolic Program to Add 100 Numbers

Line

1 ORG 100 /Origin of program is HEX 100
2 LDA ADS /Load first address of operands
3 STA PTR /Store in pointer
4 LDA NBR /Load minus 100
5 STA CTR /Store in counter
6 CLA /Clear accumulator
7 LOP, ADD PTR I /Add an operand to AC
8 ISZ PTR /Increment pointer
9 ISZ CTR /Increment counter

10 BUN LOP /Repeat loop again
11 STA SUM /Store sum
12 HLT /Halt
13 ADS, HEX 150 /First address of operands
14 PTR, HEX 0 /This location reserved for a pointer
15 NBR, DEC �100 /Constant to initialized counter
16 CTR, HEX 0 /This location reserved for a counter
17 SUM, HEX 0 /Sum is stored here
18 ORG 150 /Origin of operands is HEX 150
19 DEC 75 /First operand
.
.
.

118 DEC 23 /Last operand
119 END /End of symbolic program

Chapter06.qxd 2/2/2007 6:29 PM Page 193

EON
PreMedia

CONFIRMING PGS

symbolized by SUM (in line 17) for storing the value of this variable at the ter-
mination of the loop.

The program loop specified by the DO statement is translated to the
sequence of instructions listed in lines 7 through 10. Line 7 specifies an indi-
rect ADD instruction because it has the symbol I. The address of the current
operand is stored in location PTR. When this location is addressed indirectly
the computer takes the content of PTR to be the address of the operand. As a
result, the operand in location 150 is added to the accumulator. Location PTR
is then incremented with the ISZ instruction in line 8, so its value changes to
the value of the address of the next sequential operand. Location CTR is incre-
mented in line 9, and if it is not zero, the computer does not skip the next
instruction. The next instruction is a branch (BUN) instruction to the begin-
ning of the loop, so the computer returns to repeat the loop once again. When
location CTR reaches zero (after the loop is executed 100 times), the next
instruction is skipped and the computer executes the instructions in lines 11
and 12. The sum formed in the accumulator is stored in SUM and the com-
puter halts. The halt instruction is inserted here for clarity; actually, the pro-
gram will branch to a location where it will continue to execute the rest of the
program or branch to the beginning of another program. Note that ISZ in
line 8 is used merely to add 1 to the address pointer PTR. Since the address is
a positive number, a skip will never occur.

The program of Table 6-13 introduces the idea of a pointer and a counter
which can be used, together with the indirect address operation, to form a pro-
gram loop. The pointer points to the address of the current operand and the
counter counts the number of times that the program loop is executed. In this
example we use two memory locations for these functions. In computers with
more than one processor register, it is possible to use one processor register as
a pointer, another as a counter, and a third as an accumulator. When proces-
sor registers are used as pointers and counters they are called index registers.
Index registers are discussed in Sec. 8-5.

6-6 Programming Arithmetic
and Logic Operations
The number of instructions available in a computer may be a few hundred in
a large system or a few dozen in a small one. Some computers perform a
given operation with one machine instruction; others may require a large
number of machine instructions to perform the same operation. As an illus-
tration, consider the four basic arithmetic operations. Some computers have
machine instructions to add, subtract, multiply, and divide. Others, such as the
basic computer, have only one arithmetic instruction, such as ADD. Operations
not included in the set of machine instructions must be implemented by a

194 CHAPTER SIX Programming the Basic Computer

pointer
counter

Chapter06.qxd 2/2/2007 6:29 PM Page 194

EON
PreMedia

CONFIRMING PGS

program. We have shown in Table 6-8 a program for subtracting two num-
bers. Programs for the other arithmetic operations can be developed in a
similar fashion.

Operations that are implemented in a computer with one machine
instruction are said to be implemented by hardware. Operations implemented
by a set of instructions that constitute a program are said to be implemented
by software. Some computers provide an extensive set of hardware instruc-
tions designed to speed up common tasks. Others contain a smaller set of
hardware instructions and depend more heavily on the software implementa-
tion of many operations. Hardware implementation is more costly because of
the additional circuits needed to implement the operation. Software imple-
mentation results in long programs both in number of instructions and in
execution time.

This section demonstrates the software implementation of a few arith-
metic and logic operations. Programs can be developed for any arithmetic
operation and not only for fixed-point binary data but for decimal and float-
ingpoint data as well. The hardware implementation of arithmetic operations
is carried out in Chap. 10.

Multiplication Program
We now develop a program for multiplying two numbers. To simplify the
program, we neglect the sign bit and assume positive numbers. We also
assume that the two binary numbers have no more than eight significant bits
so their product cannot exceed the word capacity of 16 bits. It is possible
to modify the program to take care of the signs or use 16-bit numbers.
However, the product may be up to 31 bits in length and will occupy two
words of memory.

The program for multiplying two numbers is based on the procedure we
use to multiply numbers with paper and pencil. As shown in the numerical
example of Fig. 6-3, the multiplication process consists of checking the bits of
the multiplier Y and adding the multiplicand X as many times as there are 1’s
in Y, provided that the value of X is shifted left from one line to the next. Since
the computer can add only two numbers at a time, we reserve a memory loca-
tion, denoted by P, to store intermediate sums. The intermediate sums are
called partial products since they hold a partial product until all numbers are
added. As shown in the numerical example under P, the partial product starts
with zero. The multiplicand X is added to the content of P for each bit of the
multiplier Y that is 1. The value of X is shifted left after checking each bit of
the multiplier. The final value in P forms the product. The numerical example
has numbers with four significant bits. When multiplied, the product contains
eight significant bits. The computer can use numbers with eight significant bits
to produce a product of up to 16 bits.

SECTION 6-6 Programming Arithmetic and Logic Operations 195

Chapter06.qxd 2/2/2007 6:29 PM Page 195

EON
PreMedia

CONFIRMING PGS

196 CHAPTER SIX Programming the Basic Computer

AC Y

E 0

CTR 8
P 0

air EAC

Y AC

E
0 1� �

P P X�

P P

X AC

CTR

AC X

�CTR CTR

Stop

1

�0 �0

eil EAC

X holds the multiplicand
Y holds the multiplier
X forms the product

Example with four significant digits

X � 0000 1111
Y � 0000 1011

0000 1111
0001 1110
0000 0000
0111 1000
1010 0101

0000 1111
0010 1101
0010 1101
1010 0101

0000 0000
P

Figure 6-3 Flowchart for multiplication program.

Chapter06.qxd 2/2/2007 6:29 PM Page 196

EON
PreMedia

CONFIRMING PGS

The flowchart of Fig. 6-3 shows the step-by-step procedure for program-
ming the multiplication operation. The program has a loop that is traversed
eight times, once for each significant bit of the multiplier. Initially, location X
holds the multiplicand and location Y holds the multiplier. A counter CTR is
set to �8 and location P is cleared to zero.

The multiplier bit can be checked if it is transferred to the E register. This
is done by clearing E, loading the value of Y into the AC, circulating right E
and AC and storing the shifted number back into location Y. This bit stored in
E is the low-order bit of the multiplier. We now check the value of E. If it is 1,
the multiplicand X is added to the partial product P. If it is 0, the partial prod-
uct does not change. We then shift the value of X once to the left by loading
it into the AC and circulating left E and AC. The loop is repeated eight times
by incrementing location CTR and checking when it reaches zero. When the
counter reaches zero, the program exits from the loop with the product stored
in location P.

The program in Table 6-14 lists the instructions for multiplying two
unsigned numbers. The initialization is not listed but should be included when
the program is loaded into the computer. The initialization consists of bring-
ing the multiplicand and multiplier into locations X and Y, respectively; ini-
tializing the counter to �8; and initializing location P to zero. If these locations

SECTION 6-6 Programming Arithmetic and Logic Operations 197

TABLE 6-14 Program to Multiply Two Positive Numbers

ORG 100
LOP, CLE /Clear E

LDA Y /Load multiplier
CIR /Transfer multiplier bit to E
STA Y /Store shifted multiplier
SZE /Check if bit is zero
BUN ONE /Bit is one; go to ONE
BUN ZRO /Bit is zero; go to ZRO

ONE, LDA X /Load multiplicand
ADD P /Add to partial product
STA P /Store partial product
CLE /Clear E

ZRO, LDA X /Load multiplicand
CIL /Shift left
STA X /Store shifted multiplicand
ISZ CTR /Increment counter
BUN LOP /Counter not zero; repeat loop
HLT /Counter is zero; halt

CTR, DEC �8 /This location serves as a counter
X, HEX 000F /Multiplicand stored here
Y, HEX 000B /Multiplier stored here
P, HEX 0 /Product formed here

END

Chapter06.qxd 2/2/2007 6:29 PM Page 197

EON
PreMedia

CONFIRMING PGS

are not initialized, the program may run with incorrect data. The program
itself is straightforward and follows the steps listed in the flowchart. The com-
ments may help in following the step-by-step procedure.

This example has shown that if a computer does not have a machine
instruction for a required operation, the operation can be programmed by a
sequence of machine instructions. Thus we have demonstrated the software
implementation of the multiplication operation. The corresponding hardware
implementation is presented in Sec. 10-3.

Double-Precision Addition
When two 16-bit unsigned numbers are multiplied, the result is a 32-bit prod-
uct that must be stored in two memory words. A number stored in two mem-
ory words is said to have double precision. When a partial product is
computed, it is necessary that a double-precision number be added to the
shifted multiplicand, which is also a double-precision number. For greater
accuracy, the programmer may wish to employ double-precision numbers
and perform arithmetic with operands that occupy two memory words. We
now develop a program that adds two double-precision numbers.

One of the double-precision numbers is placed in two consecutive mem-
ory locations, AL and AH, with AL holding the 16 low-order bits. The other
number is placed in BL and BH. The program is listed in Table 6-15. The two
low-order portions are added and the carry transferred into E. The AC is
cleared and the bit in E is circulated into the least significant position of the
AC. The two high-order portions are then added to the carry and the double-
precision sum is stored in CL and CH.

198 CHAPTER SIX Programming the Basic Computer

TABLE 6-15 Program to Add Two Double-Precision Numbers

LDA AL /Load A low
ADD BL /Add B low, carry in E
STA CL /Store in C low
CLA /Clear AC
CIL /Circulate to bring carry into AC(16)
ADD AH /Add A high and carry
ADD BH /Add B high
STA CH /Store in C high
HLT

AL, — /Location of operands
AH, —
BL, —
BH, —
CL, —
CH, —

Chapter06.qxd 2/2/2007 6:29 PM Page 198

EON
PreMedia

CONFIRMING PGS

Logic Operations
The basic computer has three machine instructions that perform logic opera-
tions: AND, CMA, and CLA. The LDA instruction may be considered as a
logic operation that transfers a logic operand into the AC. In Sec. 4-5 we listed
16 different logic operations. All 16 logic operations can be implemented by
software means because any logic function can be implemented using the
AND and complement operations. For example, the OR operation is not
available as a machine instruction in the basic computer. From DeMorgan’s
theorem we recognize the relation x � y � (x�y�)�. The second expression con-
tains only AND and complement operations. A program that forms the OR
operation of two logic operands A and B is as follows:

LDA A Load first operand A

CMA Complement to get A—

STA TMP Store in a temporary location

LDA B Load second operand B

CMA Complement to get B—

AND TMP AND with A— to get A— � B—

CMA Complement again to get A � B

The other logic operations can be implemented by software in a similar
fashion.

Shift Operations
The circular-shift operations are machine instructions in the basic computer.
The other shifts of interest are the logical shifts and arithmetic shifts. These
two shifts can be programmed with a small number of instructions.

The logical shift requires that zeros be added to the extreme positions.
This is easily accomplished by clearing E and circulating the AC and E. Thus
for a logical shift-right operation we need the two instructions

CLE
CIR

For a logical shift-left operation we need the two instructions

CLE
CIL

The arithmetic shifts depend on the type of representation of negative
numbers. For the basic computer we have adopted the signed-2’s complement
representation. The rules for arithmetic shifts are listed in Sec. 4-6. For an
arithmetic right-shift it is necessary that the sign bit in the leftmost position
remain unchanged. But the sign bit itself is shifted into the high-order bit

SECTION 6-6 Programming Arithmetic and Logic Operations 199

Chapter06.qxd 2/2/2007 6:29 PM Page 199

EON
PreMedia

CONFIRMING PGS

position of the number. The program for the arithmetic right-shift requires that
we set E to the same value as the sign bit and circulate right, thus:

CLE /Clear E to O
SPA /Skip if AC is positive; E remains D
CME AC is negative; set E to 1
CIR /Circulate E and AC

For arithmetic shift-left it is necessary that the added bit in the least significant
position be 0. This is easily done by clearing E prior to the circulate-left oper-
ation. The sign bit must not change during this shift. With a circulate instruc-
tion, the sign bit moves into E. It is then necessary to compare the sign bit with
the value of E after the operation. If the two values are equal, the arithmetic
shift has been correctly implemented. If they are not equal, an overflow
occurs. An overflow indicates that the unshifted number was too large. When
multiplied by 2 (by means of the shift), the number so obtained exceeds the
capacity of the AC.

6-7 Subroutines
Frequently, the same piece of code must be written over again in many differ-
ent parts of a program. Instead of repeating the code every time it is needed,
there is an obvious advantage if the common instructions are written only once.
A set of common instructions that can be used in a program many times is
called a subroutine, Each time that a subroutine is used in the main part of the
program, a branch is executed to the beginning of the- subroutine. After the
subroutine has been executed, a branch is made back to the main program.

A subroutine consists of a self-contained sequence of instructions that
carries out a given task. A branch can be made to the subroutine from any part
of the main program. This poses the problem of how the subroutine knows
which location to return to, since many different locations in the main pro-
gram may make branches to the same subroutine. It is therefore necessary to
store the return address somewhere in the computer for the subroutine to
know where to return. Because branching to a subroutine and returning to the
main program is such a common operation, all computers provide special
instructions to facilitate subroutine entry and return.

In the basic computer, the link between the main program and a sub-
routine is the BSA instruction (branch and save return address). To explain
how this instruction is used, let us write a subroutine that shifts the content of
the accumulator four times to the left. Shifting a word four times is a useful
operation for processing binary-coded decimal numbers or alphanumeric
characters. Such an operation could have been included as a machine instruc-
tion in the computer. Since it is not included, a subroutine is formed to accom-
plish this task. The program of Table 6-16 starts by loading the value of X into

200 CHAPTER SIX Programming the Basic Computer

Chapter06.qxd 2/2/2007 6:29 PM Page 200

EON
PreMedia

CONFIRMING PGS

the AC. The next instruction encountered is BSA SH4. The BSA instruction is
in location 101. Subroutine SH4 must return to location 102 after it finishes its
task. When the BSA instruction is executed, the control unit stores the return
address 102 into the location defined by the symbolic address SH4 (which is
109). It also transfers the value of SH4 � 1 into the program counter. After this
instruction is executed, memory location 109 contains the binary equivalent of
hexadecimal 102 and the program counter contains the binary equivalent of
hexadecimal 10A. This action has saved the return address and the subroutine
is now executed starting from location 10A (since this is the content of PC in
the next fetch cycle).

The computation in the subroutine circulates the content of AC four
times to the left. In order to accomplish a logical shift operation, the four low-
order bits must be set to zero. This is done by masking FFF0 with the content
of AC. A mask operation is a logic AND operation that clears the bits of the
AC where the mask operand is zero and leaves the bits of the AC unchanged
where the mask operand bits are 1’s.

The last instruction in the subroutine returns the computer to the main
program. This is accomplished by the indirect branch instruction with an
address symbol identical to the symbol used for the subroutine name. The
address to which the computer branches is not SH4 but the value found in
location SH4 because this is an indirect address instruction. What is found in

SECTION 6-7 Subroutines 201

TABLE 6-16 Program to Demonstrate the Use of Subroutines

Location

ORG 100 /Main program
100 LDA X /Load X
101 BSA SH4 /Branch to subroutine
102 STA X /Store shifted number
103 LDA Y /Load Y
104 BSA SH4 /Branch to subroutine again
105 STA Y /Store shifted number
106 HLT
107 X, HEX 1234
108 Y, HEX 4321

/Subroutine to shift left 4 times
109 SH4, HEX 0 /Store return address here
10A CIL /Circulate left once
10B CIL
10C CIL
10D CIL /Circulate left fourth time
10E AND MSK /Set AC(13–16) to zero
10F BUN SH4 I /Return to main program
110 MSK, HEX FFF0 /Mask operand

END

Chapter06.qxd 2/2/2007 6:29 PM Page 201

EON
PreMedia

CONFIRMING PGS

location SH4 is the return address 102 which was previously stored there
by the BSA instruction. The computer returns to execute the instruction
in location 102. The main program continues by storing the shifted number
into location X. A new number is then loaded into the AC from location Y,
and another branch is made to the subroutine. This time location SH4 will
contain the return address 105 since this is now the location of the next
instruction after BSA. The new operand is shifted and the subroutine returns
to the main program at location 105.

From this example we see that the first memory location of each sub-
routine serves as a link between the main program and the subroutine. The
procedure for branching to a subroutine and returning to the main program is
referred to as a subroutine linkage. The BSA instruction performs an operation
commonly called subroutine call. The last instruction of the subroutine per-
forms an operation commonly called subroutine return.

The procedure used in the basic computer for subroutine linkage is
commonly found in computers with only one processor register. Many com-
puters have multiple processor registers and some of them are assigned the
name index registers. In such computers, an index register is usually employed
to implement the subroutine linkage. A branch-to-subroutine instruction
stores the return address in an index register. A return-from-subroutine
instruction is effected by branching to the address presently stored in the
index register.

Subroutine Parameters and Data Linkage
When a subroutine is called, the main program must transfer the data it wishes
the subroutine to work with. In the previous example, the data were trans-
ferred through the accumulator. The operand was loaded into the AC prior to
the branch. The subroutine shifted the number and left it there to be accepted
by the main program. In general, it is necessary for the subroutine to have
access to data from the calling program and to return results to that program.
The accumulator can be used for a single input parameter and a single output
parameter. In computers with multiple processor registers, more parameters
can be transferred this way. Another way to transfer data to a subroutine is
through the memory. Data are often placed in memory locations following the
call. They can also be placed in a block of storage. The first address of the block
is then placed in the memory location following the call. In any case, the return
address always gives the link information for transferring data between the
main program and the subroutine.

As an illustration, consider a subroutine that performs the logic OR
operation. Two operands must be transferred to the subroutine and the sub-
routine must return the result of the operation. The accumulator can be used
to transfer one operand and to receive the result. The other operand is

202 CHAPTER SIX Programming the Basic Computer

Chapter06.qxd 2/2/2007 6:29 PM Page 202

EON
PreMedia

CONFIRMING PGS

inserted in the location following the BSA instruction. This is demonstrated
in the program of Table 6-17. The first operand in location X is loaded into
the AC. The second operand is stored in location 202 following the BSA
instruction. After the branch, the first location in the subroutine holds the
number 202. Note that in this case, 202 is not the return address but the
address of the second operand. The subroutine starts performing the OR
operation by complementing the first operand in the AC and storing it in a
temporary location TMP. The second operand is loaded into the AC by an
indirect instruction at location OR. Remember that location OR contains the
number 202. When the instruction refers to it indirectly, the operand at loca-
tion 202 is loaded into the AC. This operand is complemented and then
ANDed with the operand stored in TMP. Complementing the result forms
the OR operation.

The return from the subroutine must be manipulated so that the main
program continues from location 203 where the next instruction is located.
This is accomplished by incrementing location OR with the ISZ instruction.
Now location OR holds the number 203 and an indirect BUN instruction
causes a return to the proper place.

It is possible to have more than one operand following the BSA
instruction. The subroutine must increment the return address stored in its

SECTION 6-7 Subroutines 203

TABLE 6-17 Program to Demonstrate Parameter Linkage

Location

ORG 200
200 LDA X /Load first operand into AC
201 BSA OR /Branch to subroutine OR
202 HEX 3AF6 /Second operand stored here
203 STA Y /Subroutine returns here
204 HLT
205 X, HEX 7B95 /First operand stored here
206 Y, HEX 0 /Result stored here
207 OR, HEX 0 /Subroutine OR
208 CMA /Complement first operand
209 STA TMP /Store in temporary location
20A LDA OR I /Load second operand
20B CMA /Complement second operand
20C AND TMP /AND complemented first operand
20D CMA /Complement again to get OR
20E ISZ OR /Increment return address
20F BUN OR I /Return to main program
210 TMP, HEX 0 /Temporary storage

END

Chapter06.qxd 2/2/2007 6:29 PM Page 203

EON
PreMedia

CONFIRMING PGS

first location for each operand that it extracts from the calling program.
Moreover, the calling program can reserve one or more locations for the sub-
routine to return results that are computed. The first location in the subrou-
tine must be incremented for these locations as well, before the return. If
there is a large amount of data to be transferred, the data can be placed in a
block of storage and the address of the first item in the block is then used as
the linking parameter.

A subroutine that moves a block of data starting at address 100 into a
block starting with address 200 is listed in Table 6-18. The length of the block
is 16 words. The first introduction is a branch to subroutine MVE. The first
part of the subroutine transfers the three parameters 100, 200 and —16 from
the main program and places them in its own storage location. The items are
retrieved from their blocks by the use of two pointers. The counter ensures
that only 16 items are moved. When the subroutine completes its operation,
the data required is in the block starting from the location 200. The return to
the main program is to the HLT instruction.

204 CHAPTER SIX Programming the Basic Computer

TABLE 6-18 Subroutine to Move a Block of Data

/Main program
BSA MVE /Branch to subroutine
HEX 100 /First address of source data
HEX 200 /First address of destination data
DEC �16 /Number of items to move
HLT

MVE, HEX 0 /Subroutine MVE
LDA MVE I /Bring address of source
STA PT1 /Store in first pointer
ISZ MVE /Increment return address
LDA MVE I /Bring address of destination
STA PT2 /Store in second pointer
ISZ MVE /Increment return address
LDA MVE I /Bring number of items
STA CTR /Store in counter
ISZ MVE /Increment return address

LOP, LDA PT1 I /Load source item
STA PT2 I /Store in destination
ISZ PT1 /Increment source pointer
ISZ PT2 /Increment destination pointer
ISZ CTR /Increment counter
BUN LOP /Repeat 16 times
BUN MVE I /Return to main program

PT1, —
PT2, —
CTR, —

Chapter06.qxd 2/2/2007 6:29 PM Page 204

EON
PreMedia

CONFIRMING PGS

6-8 Input–Output Programming
Users of the computer write programs with symbols that are defined by the
programming language employed. The symbols are strings of characters and
each character is assigned an 8-bit code so that it can be stored in computer
memory. A binary-coded character enters the computer when an INP (input)
instruction is executed. A binary-coded character is transferred to the output
device when an OUT (output) instruction is executed. The output device
detects the binary code and types the corresponding character.

Table 6-19(a) lists the instructions needed to input a character and store
it in memory. The SKI instruction checks the input flag to see if a character is
available for transfer. The next instruction is skipped if the input flag bit is 1.
The INP instruction transfers the binary-coded character into AC(0–7). The
character is then printed by means of the OUT instruction. A terminal unit
that communicates directly with a computer does not print the character when
a key is depressed. To type it, it is necessary to send an OUT instruction for
the printer. In this way, the user is ensured that the correct transfer has
occurred. If the SKI instruction finds the flag bit at 0, the next instruction in
sequence is executed. This instruction is a branch to return and check the flag
bit again. Because the input device is much slower than the computer, the two
instructions in the loop will be executed many times before a character is
transferred into the accumulator.

Table 6-19(b) lists the instructions needed to print a character initially
stored in memory. The character is first loaded into the AC. The output flag is
then checked. If it is 0, the computer remains in a two-instruction loop check-
ing the flag bit. When the flag changes to 1, the character is transferred from
the accumulator to the printer.

SECTION 6-8 Input–Output Programming 205

TABLE 6-19 Programs to Input and Output One Character

(a) Input a character:
CIF, SKI /Check input flag

BUN CIF /Flag�0, branch to check again
INP /Flag�1, input character
OUT /Print character
STA CHR /Store character
HLT

CHR, � /Store character here
(b) Output one character:

LDA CHR /Load character into AC
COF, SKO /Check output flag

BUN COF /Flag�0, branch to check again
OUT /Flag�1, output character
HLT

CHR, HEX 0057 /Character is “W”

Chapter06.qxd 2/2/2007 6:29 PM Page 205

EON
PreMedia

CONFIRMING PGS

Character Manipulation
A computer is not just a calculator but also a symbol manipulator. The
binary-coded characters that represent symbols can be manipulated by com-
puter instructions to achieve various data-processing tasks. One such task
may be to pack two characters in one word. This is convenient because each
character occupies 8 bits and a memory word contains 16 bits. The program in
Table 6-20 lists a subroutine named IN2 that inputs two characters and packs
them into one 16-bit word. The packed word remains in the accumulator.
Note that subroutine SH4 (Table 6-16) is called twice to shift the accumulator
left eight times.

In the discussion of the assembler it was assumed that the symbolic
program is stored in a section of memory which is sometimes called a buffer.
The symbolic program being typed enters through the input device and is
stored in consecutive memory locations in the buffer. The program listed in
Table 6-21 can be used to input a symbolic program from the keyboard, pack
two characters in one word, and store them in the buffer. The first address
of the buffer is 500. The first double character is stored in location 500 and
all characters are stored in sequential locations. The program uses a pointer
for keeping track of the current empty location in the buffer. No counter is
used in the program, so characters will be read as long as they are available
or until the buffer reaches location 0 (after location FFFF). In a practical sit-
uation it may be necessary to limit the size of the buffer and a counter may
be used for this purpose. Note that subroutine IN2 of Table 6-20 is called to
input and pack the two characters.

In discussing the second pass of the assembler in Sec. 6-4 it was men-
tioned that one of the most common operations of an assembler is table
lookup. This is an operation that searches a table to find out if it contains a
given symbol. The search may be done by comparing the given symbol with
each of the symbols stored in the table. The search terminates when a match

206 CHAPTER SIX Programming the Basic Computer

TABLE 6-20 Subroutine to Input and Pack Two Characters

IN2, — /Subroutine entry
FST, SKI

BUN FST
INP /Input first character
OUT
BSA SH4 /Shift left four times
BSA SH4 /Shift left four more times

SCD, SKI
BUN SCD
INP /Input second character
OUT
BUN IN2 I /Return

Chapter06.qxd 2/2/2007 6:29 PM Page 206

EON
PreMedia

CONFIRMING PGS

occurs or if none of the symbols match. When a match occurs, the assembler
retrieves the equivalent binary value. A program for comparing two words is
listed in Table 6-22. The comparison is accomplished by forming the 2’s com-
plement of a word (as if it were a number) and arithmetically adding it to the
second word. If the result is zero, the two words are equal and a match occurs.
If the result is not zero, the words are not the same. This program can serve
as a subroutine in a table-lookup program.

Program Interrupt
The running time of input and output programs is made up primarily of the
time spent by the computer in waiting for the external device to set its flag.
The waiting loop that checks the flag keeps the computer occupied with a task
that wastes a large amount of time. This waiting time can be eliminated if the
interrupt facility is used to notify the computer when a flag is set. The advan-
tage of using the interrupt is that the information transfer is initiated upon
request from the external device. In the meantime, the computer can be busy
performing other useful tasks. Obviously, if no other program resides in mem-
ory, there is nothing for the computer to do, so it might as well check for the

SECTION 6-8 Input–Output Programming 207

TABLE 6-21 Program to Store Input Characters in a Buffer

LDA ADS /Load first address of buffer
STA PTR /Initialize pointer

LOP, BSA IN2 /Go to subroutine IN2 (Table 6-20)
STA PTR I /Store double character word in buffer
ISZ PTR /Increment pointer
BUN LOP /Branch to input more characters
HLT

ADS, HEX 500 /First address of buffer
PTR, HEX 0 /Location for pointer

TABLE 6-22 Program to Compare Two Words

LDA WD1 /Load first word
CMA
INC /Form 2’s complement
ADD WD2 /Add second word
SZA /Skip if AC is zero
BUN UEQ /Branch to “unequal” routine
BUN EQL /Branch to “equal” routine

WD1, �
WD2, �

Chapter06.qxd 2/2/2007 6:29 PM Page 207

EON
PreMedia

CONFIRMING PGS

flags. The interrupt facility is useful in a multiprogram environment when two
or more programs reside in memory at the same time.

Only one program can be executed at any given time even though two
or more programs may reside in memory. The program currently being exe-
cuted is referred to as the running program. The other programs are usually
waiting for input or output data. The function of the interrupt facility is to take
care of the data transfer of one (or more) program while another program is
currently being executed. The running program must include an ION instruc-
tion to turn the interrupt on. If the interrupt facility is not used, the program
must include an IOF instruction to turn it off. (The start switch of the computer
should also turn the interrupt off.)

The interrupt facility allows the running program to proceed until the
input or output device sets its ready flag. Whenever a flag is set to 1, the
computer completes the execution of the instruction in progress and then
acknowledges the interrupt. The result of this action is that the return address
is stored in location 0. The instruction in location 1 is then performed; this ini-
tiates a service routine for the input or output transfer. The service routine can
be stored anywhere in memory provided a branch to the start of the routine
is stored in location 1. The service routine must have instructions to perform
the following tasks:

1. Save contents of processor registers.
2. Check which flag is set.
3. Service the device whose flag is set.
4. Restore contents of processor registers.
5. Turn the interrupt facility on.
6. Return to the running program.

The contents of processor registers before the interrupt and after the
return to the running program must be the same; otherwise, the running
program may be in error. Since the service routine may use these registers,
it is necessary to save their contents at the beginning of the routine and
restore them at the end. The sequence by which the flags are checked dic-
tates the priority assigned to each device. Even though two or more flags
may be set at the same time, the devices nevertheless are serviced one at a
time. The device with higher priority is serviced first followed by the one
with lower priority.

The occurrence of an interrupt disables the facility from further inter-
rupts. The service routine must turn the interrupt on before the return to the
running program. This will enable further interrupts while the computer is
executing the running program. The interrupt facility should not be turned on
until after the return address is inserted into the program counter.

208 CHAPTER SIX Programming the Basic Computer

Chapter06.qxd 2/2/2007 6:29 PM Page 208

EON
PreMedia

CONFIRMING PGS

An example of a program that services an interrupt is listed in Table 6-23.
Location 0 is reserved for the return address. Location 1 has a branch instruc-
tion to the beginning of the service routine SRV. The portion of the running
program listed has an ION instruction that turns the interrupt on. Suppose that
an interrupt occurs while the computer is executing the instruction in location
103. The interrupt cycle stores the binary equivalent of hexadecimal 104 in
location 0 and branches to location 1. The branch instruction in location 1 sends
the computer to the service routine SRV.

SECTION 6-8 Input–Output Programming 209

TABLE 6-23 Program to Service an Interrupt

Location

0 ZRO, — /Return address stored here
1 BUN SRV /Branch to service routine

100 CLA /Portion of running program
101 ION /Turn on interrupt facility
102 LDA X
103 ADD Y /Interrupt occurs here
104 STA Z /Program returns here after interrupt

• •
• •
• •

/Interrupt service routine
200 SRV, STA SAC /Store content of AC

CIR /Move E into AC (1)
STA SE /Store content of E
SKI /Check input flag
BUN NXT /Flag is off, check next flag
INP /Flag is on, input character
OUT /Print character
STA PT1 I /Store it in input buffer
ISZ PT1 /Increment input pointer

NXT, SKO /Check output flag
BUN EXT /Flag is off, exit
LDA PT2 I /Load character from output buffer
OUT /Output character
ISZ PT2 /Increment output pointer

EXT, LDA SE /Restore value of AC(1)
CIL /Shift it to E
LDA SAC /Restore content of AC
ION /Turn interrupt on
BUN ZRO I /Return to running program

SAC, — /AC is stored here
SE, — /E is stored here
PT1, — /Pointer of input buffer
PT2, — /Pointer of output buffer

Chapter06.qxd 2/2/2007 6:29 PM Page 209

EON
PreMedia

CONFIRMING PGS

The service routine performs the six tasks mentioned above. The con-
tents of AC and E are stored in special locations. (These are the only proces-
sor registers in the basic computer.) The flags are checked sequentially, the
input flag first and the output flag second. If any or both flags are set, an item
of data is transferred to or from the corresponding memory buffer. Before
returning to the running program the previous contents of E and AC are
restored and the interrupt facility is turned on. The last instruction causes a
branch to the address stored in location 0. This is the return address stored
there previously during the interrupt cycle. Hence the running program will
continue from location 104, where it was interrupted.

A typical computer may have many more input and output devices con-
nected to the interrupt facility. Furthermore, interrupt sources are not limited
to input and output transfers. Interrupts can be used for other purposes, such
as internal processing errors or special alarm conditions. Further discussion of
interrupts and some advanced concepts concerning this important subject can
be found in Sec. 11-5.

210 CHAPTER SIX Programming the Basic Computer

PROBLEMS

6-1. The following program is stored in the memory unit of the basic computer.
Show the contents of the AC, PC, and IR (in hexadecimal), at the end, after
each instruction is executed. All numbers listed below are in hexadecimal.

6-2. The following program is a list of instructions in hexadecimal code. The
computer executes the instructions starting from address 100. What are the
content of AC and the memory word at address 103 when the computer
halts?

Location Instruction

010 CLA
011 ADD 016
012 BUN 014
013 HLT
014 AND 017
015 BUN 013
016 C1A5
017 93C6

Chapter06.qxd 2/2/2007 6:29 PM Page 210

EON
PreMedia

CONFIRMING PGS

6-3. List the assembly language program (of the equivalent binary instructions
generated by a compiler from the following Fortran program. Assume inte-
ger variables.

SUM � 0
SUM � SUM � A � B
DIF � DIF � C
SUM � SUM � DIF

6-4. Can the letter I be used as a symbolic address in the assembly language pro-
gram defined for the basic computer? Justify the answer.

6-5. What happens during the first pass of the assembler (Fig. 6-1) if the line of
code that has a pseudoinstruction ORG or END also has a label? Modify
thy flowchart to include an error message if this occurs.

6-6. A line of code in an assembly language program is as follows:

DEC �35

a. Show that four memory words are required to store the line code and
give their binary content.

b. Show that one memory word stores the binary translated code and give
its binary content.

6-7. a. Obtain the address symbol table generated for the program of Table 6-
13 during the first pass of the assembler.

b. List the translated program in hexadecimal.
6-8. The pseudoinstruction BSS N (block started by symbol) is sometimes

employed to reserve N memory words for a group of operands. For exam-
ple, the line of code

A, BSS 10

informs the assembler that a block of 10 (decimal) locations is to be left
free, starting from location A. This is similar to the Fortran statement
DIMENSION A(10). Modify the flowchart of Fig. 6-1 to process this
pseudoinstruction.

Location Instruction

100 5103
101 7200
102 7001
103 0000
104 7800
105 7020
106 C103

SECTION 6-8 Input–Output Programming 211

Chapter06.qxd 2/2/2007 6:29 PM Page 211

EON
PreMedia

CONFIRMING PGS

6-9. Modify the flowchart of Fig. 6-2 to include an error message when a sym-
bolic address is not defined by a label.

6-10. Show how the MRI and non-MRI tables can be stored in memory.
6-11. List the assembly language program (of the equivalent binary instructions)

generated by a compiler for the following IF statement:

IF(A � B) 10, 20, 30

The program branches to statement 10 if A � B � 0; to statement 20 if
A � B � 0; and to statement 30 if A � B � 0.

6-12. a. Explain in words what the following program accomplishes when it is
executed. What is the value of location CTR when the computer halts?

b. List the address symbol table obtained during the first pass of the
assembler.

c. List the hexadecimal code of the translated program.

ORG 100
CLE
CLA
STA CTR
LDA WRD
SZA
BUN ROT
BUN STP

ROT, CIL
SZE
BUN AGN
BUN ROT

AGN, CLE
ISZ CTR
SZA
BUN ROT

STP, HLT
CTR, HEX 0
WRD, HEX 62C1

END

6-13. Write a program loop, using a pointer and a counter, that clears to 0 the con-
tents of hexadecimal locations 500 through 5FF.

6-14. Write a program to multiply two positive numbers by a repeated addition
method. For example, to multiply 5 � 4, the program evaluates the product
by adding 5 four times, or 5 � 5 � 5 � 5.

6-15. The multiplication program of Table 6-14 is not initialized. After the
program is executed once, location CTR will be left with zero. Show that if
the program is executed again starting from location 100, the loop will
be traversed 65536 times. Add the needed instructions to initialize the
program.

212 CHAPTER SIX Programming the Basic Computer

Chapter06.qxd 2/2/2007 6:29 PM Page 212

EON
PreMedia

CONFIRMING PGS

6-16. Write a program to multiply two unsigned positive numbers, each with 16
significant bits, to produce an unsigned double-precision product.

6-17. Write a program to multiply two signed numbers with negative numbers
being initially in signed-2’s complement representation. The product should
be single-precision and signed-2’s complement representation if negative.

6-18. Write a program to subtract two double-precision numbers.
6-19. Write a program that evaluates the logic exclusive-OR of two logic operands.
6-20. Write a program for the arithmetic shift-left operation. Branch to OVF if an

overflow occurs.
6-21. Write a subroutine to subtract two numbers. In the calling program, the

BSA instruction is followed by the subtrahend and minuend. The difference
is returned to the main program in the third location following the BSA
instruction.

6-22. Write a subroutine to complement each word in a block of data. In the call-
ing program, the BSA instruction is followed by two parameters: the start-
ing address of the block and the number of words in the block.

6-23. Write a subroutine to circulate E and AC four times to the right. 1 AC con-
tains hexadecimal 079C and E � 1, what are the contents of AC and E after
the subroutine is executed?

6-24. Write a program to accept input characters, pack two characters in one word
and store them in consecutive locations in a memory buffer. The first
address of the buffer is (400)16. The size of the buffer is (512)10 words. in the
buffer overflows, the computer should halt.

6-25. Write a program to unpack two characters from location WRD and store
them in bits 0 through 7 of locations CH1 and CH2. Bits 9 through 15
should contain zeros.

6-26. Obtain a flowchart for a program to check for a CR code (hexadecimal 0D)
in a memory buffer. The buffer contains two characters per word. When the
code for CR is encountered, the program transfers it to bits 0 through 7 of
location LNE without disturbing bits 8 through 15.

6-27. Translate the service routine SRV from Table 6-23 to its equivalent hexa-
decimal code. Assume that the routine is stored starting from location 200.

6-28. Write an interrupt service routine that performs all the required functions
but the input device is serviced only if a special location, MOD, contains all
1’s. The output device is serviced only if location MOD contains all 0’s.

SECTION 6-8 Input–Output Programming 213

REFERENCES

1. Booth, T. L., Introduction to Computer Engineering, 3rd ed. New York: John Wiley,
1984.

2. Gear, C. W., Computer Organization and Programming, 3rd ed. New York: McGraw-
Hill, 1980.

Chapter06.qxd 2/2/2007 6:29 PM Page 213

EON
PreMedia

CONFIRMING PGS

3. Gibson, G. A., Computer Systems Concepts and Design. Englewood Cliffs, NJ: Prentice
Hall, 1991.

4. Gray, N. A. B., Introduction to Computer Systems. Englewood Cliffs, NJ: Prentice
Hall, 1987.

5. Levy, H. M., and R. H. Eckhouse, Jr., Computer Programming and Architecture: The
VAX-11. Bedford, MA: Digital Press, 1980.

6. Lewin, M. H., Logic Design and Computer Organization. Reading, MA: Addison-
Wesley, 1983.

7. Prosser, F. P., and D. E. Winkel, The Art of Digital Design, 2nd ed. Englewood Cliffs,
NJ: Prentice Hall, 1987.

8. Shiva, S. G., Computer Design and Architecture, 2nd ed. New York: HarperCollins
Publishers, 1991.

9. Tanenbaum, A. S., Structured Computer Organization, 3rd ed. Englewood Cliffs, NJ:
Prentice Hall, 1990.

10. Wakerly, J. F., Microcomputer Architecture and Programming. New York: John Wiley,
1981.

214 CHAPTER SIX Programming the Basic Computer

Chapter06.qxd 2/2/2007 6:29 PM Page 214

EON
PreMedia

CONFIRMING PGS

IN THIS CHAPTER

7-1 Control Memory
7-2 Address Sequencing
7-3 Microprogram Example
7-4 Design of Control Unit

7-1 Control Memory
The major functional parts in a digital computer are Central Processing Unit
(CPU), Memory, and Input–output. The main digital hardware functional
units of CPU are control unit, arithmetic and logic unit, and registers. The
function of the control unit in a digital computer is to initiate sequences of
microoperations. The number of different types of microoperations that are
available in a given system is finite. The complexity of the digital system is
derived from the number of sequences of microoperations that are performed.
Two methods of implementing control unit are hardwired control and micro-
programmed control. The design of hardwired control involves the use of
fixed instructions, fixed logic blocks of and/or arrays, encoders, decoders, etc.
The key characteristics of hardwired control logic are high-speed operation,
expensive, relatively complex, and no flexibility of adding new instructions.
Example CPUs with hardwired logic control are Intel 8085, Motorola 6802,
Zilog 80, and any RISC (Reduced Instruction Set Computer) CPUs. When the
control signals are generated by hardware using conventional logic design
techniques, the control unit is said to be hardwired. Microprogramming is a
second alternative for designing the control unit of a digital computer. The
principle of microprogramming is an elegant and systematic method for con-
trolling the microoperation sequences in a digital computer. For example,
CPUs with microprogrammed control unit are Intel 8080, Motorola 68000,
and any CISC (Complex Instruction Set Computer) CPUs.

The control function that specifies a microoperation is a binary variable.
When it is in one binary state, the corresponding microoperation is executed.

215

C H A P T E R S E V E N

Microprogrammed
Control

Chapter07.qxd 2/2/2007 6:31 PM Page 215

EON
PreMedia

CONFIRMING PGS

A control variable in the opposite binary state does not change the state of the
registers in the system. The active state of a control variable may be either the
1 state or the 0 state, depending on the application. In a bus-organized system,
the control signals that specify microoperations are groups of bits that select
the paths in multiplexers, decoders, and arithmetic logic units.

The control unit initiates a series of sequential steps of microoperations.
During any given time, certain microoperations are to be initiated, while oth-
ers remain idle. The control variables at any given time can be represented by
a string of 1’s and 0’s called a control word. As such, control words can be pro-
grammed to perform various operations on the components of the system. A
control unit whose binary control variables are stored in memory is called a
microprogrammed control unit. Each word in control memory contains within it
a microinstruction. The microinstruction specifies one or more microoperations
for the system. A sequence of microinstructions constitutes a microprogram.
Since alterations of the microprogram are not needed once the control unit is
in operation, the control memory can be a read-only memory (ROM). The
content of the words in ROM are fixed and cannot be altered by simple pro-
gramming since no writing capability is available in the ROM. ROM words
are made permanent during the hardware production of the unit. The use of
a microprogram involves placing all control variables in words of ROM for
use by the control unit through successive read operations. The content of the
word in ROM at a given address specifies a microinstruction.

A more advanced development known as dynamic microprogramming
permits a microprogram to be loaded initially from an auxiliary memory such
as a magnetic disk. Control units that use dynamic microprogramming
employ a writable control memory. This type of memory can be used for writ-
ing (to change the microprogram) but is used mostly for reading. A memory
that is part of a control unit is referred to as a control memory.

A computer that employs a microprogrammed control unit will have two
separate memories: a main memory and a control memory. The main memory
is available to the user for storing the programs. The contents of main memory
may alter when the data are manipulated and every time that the program is
changed. The user’s program in main memory consists of machine instructions
and data. In contrast, the control memory holds a fixed microprogram that can-
not be altered by the occasional user. The microprogram consists of microin-
structions that specify various internal control signals for execution of register
microoperations. Each machine instruction initiates a series of microinstruc-
tions in control memory. These microinstructions generate the microoperations
to fetch the instruction from main memory; to evaluate the effective address, to
execute the operation specified by the instruction, and to return control to the
fetch phase in order to repeat the cycle for the next instruction.

The general configuration of a microprogrammed control unit is demon-
strated in the block diagram of Fig. 7-1. The control memory is assumed to
be a ROM, within which all control information is permanently stored. The
control memory address register specifies the address of the microinstruction,
and the control data register holds the microinstruction read from memory.

216 CHAPTER SEVEN Microprogrammed Control

control word

microinstruction
microprogram

control memory

control address
register

Chapter07.qxd 2/2/2007 6:31 PM Page 216

EON
PreMedia

CONFIRMING PGS

The microinstruction contains a control word that specifies one or more micro-
operations for the data processor. Once these operations are executed, the con-
trol must determine the next address. The location of the next microinstruction
may be the one next in sequence, or it may be located somewhere else in the
control memory. For this reason it is necessary to use some bits of the present
microinstruction to control the generation of the address of the next microin-
struction. The next address may also be a function of external input conditions.
While the microoperations are being executed, the next address is computed
in the next address generator circuit and then transferred into the control
address register to read the next microinstruction. Thus a microinstruction con-
tains bits for initiating microoperations in the data processor part and bits that
determine the address sequence for the control memory.

The next address generator is sometimes called a microprogram sequencer,
as it determines the address sequence that is read from control memory. The
address of the next microinstruction can be specified in several ways, depending
on the sequencer inputs. Typical functions of a microprogram sequencer are
incrementing the control address register by one, loading into the control
address register an address from control memory, transferring an external
address, or loading an initial address to start the control operations.

The control data register holds the present microinstruction while the
next address is computed and read from memory. The data register is some-
times called a pipeline register. It allows the execution of the microoperations
specified by the control word simultaneously with the generation of the next
microinstruction. This configuration requires a two-phase clock, with one
clock applied to the address register and the other to the data register.

The system can operate without the control data register by applying a
single-phase clock to the address register. The control word and next-address
information are taken directly from the control memory. It must be realized that
a ROM operates as a combinational circuit, with the address value as the input
and the corresponding word as the output. The content of the specified word in
ROM remains in the output wires as long as its address value remains in the
address register. No read signal is needed as in a random-access memory. Each
clock pulse will execute the microoperations specified by the control word and
also transfer a new address to the control address register. In the example that
follows we assume a single-phase clock and therefore we do not use a control

SECTION 7-1 Control Memory 217

sequencer

pipeline register

External
input

Next-
address

generator
(sequencer)

Next-address information

Control
wordControl

address
register

Control
memory
(ROM)

Control
data

register

Figure 7-1 Microprogrammed control organization.

Chapter07.qxd 2/2/2007 6:31 PM Page 217

EON
PreMedia

CONFIRMING PGS

data register. In this way the address register is the only component in the con-
trol system that receives clock pulses. The other two components: the sequencer
and the control memory are combinational circuits and do not need a clock.

The main advantage of the microprogrammed control is the fact that
once the hardware configuration is established, there should be no need for
further hardware or wiring changes. If we want to establish a different control
sequence for the system, all we need to do is specify a different set of microin-
structions for control memory. The hardware configuration should not be
changed for different operations; the only thing that must be changed is the
microprogram residing in control memory.

It should be mentioned that most computers based on the reduced
instruction set computer (RISC) architecture concept (See Sec. 8-8) use hard-
wired control rather than a control memory with a microprogram. An exam-
ple of a hardwired control for a simple computer is presented in Sec. 5-4.

7-2 Address Sequencing
Microinstructions are stored in control memory in groups, with each group
specifying a routine. Each computer instruction has its own microprogram rou-
tine in control memory to generate the microoperations that execute the
instruction. The hardware that controls the address sequencing of the control
memory must be capable of sequencing the microinstructions within a routine
and be able to branch from one routine to another. To appreciate the address
sequencing in a microprogram control unit, let us enumerate the steps that the
control must undergo during the execution of a single computer instruction.

An initial address is loaded into the control address register when power
is turned on in the computer. This address is usually the address of the first
microinstruction that activates the instruction fetch routine. The fetch routine
may be sequenced by incrementing the control address register through the
rest of its microinstructions. At the end of the fetch routine, the instruction is
in the instruction register of the computer.

The control memory next must go through the routine that determines the
effective address of the operand. A machine instruction may have bits that spec-
ify various addressing modes, such as indirect address and index registers. The
effective address computation routine in control memory can be reached through
a branch microinstruction, which is conditioned on the status of the mode bits of
the instruction. When the effective address computation routine is completed, the
address of the operand is available in the memory address register.

The next step is to generate the microoperations that execute the instruc-
tion fetched from memory. The microoperation steps to be generated in
processor registers depend on the operation code part of the instruction. Each
instruction has its own microprogram routine stored in a given location of con-
trol memory. The transformation from the instruction code bits to an address
in control memory where the routine is located is referred to as a mapping

218 CHAPTER SEVEN Microprogrammed Control

hardwired control

routine

mapping

Chapter07.qxd 2/2/2007 6:31 PM Page 218

EON
PreMedia

CONFIRMING PGS

process. A mapping procedure is a rule that transforms the instruction code into
a control memory address. Once the required routine is reached, the microin-
structions that execute the instruction may be sequenced by incrementing the
control address register, but sometimes the sequence of microoperations will
depend on values of certain status bits in processor registers. Microprograms
that employ subroutines will require an external register for storing the return
address. Return addresses cannot be stored in ROM because the unit has no
writing capability.

When the execution of the instruction is completed, control must return
to the fetch routine. This is accomplished by executing an unconditional
branch microinstruction to the first address of the fetch routine. In summary,
the address sequencing capabilities required in a control memory are:

1. Incrementing of the control address register.
2. Unconditional branch or conditional branch, depending on status bit

conditions.
3. A mapping process from the bits of the instruction to an address for

control memory.
4. A facility for subroutine call and return.

Figure 7-2 shows a block diagram of a control memory and the associ-
ated hardware needed for selecting the next microinstruction address. The
microinstruction in control memory contains a set of bits to initiate microop-
erations in computer registers and other bits to specify the method by which
the next address is obtained. The diagram shows four different paths from
which the control address register (CAR) receives the address. The incre-
menter increments the content of the control address register by one, to select
the next microinstruction in sequence. Branching is achieved by specifying the
branch address in one of the fields of the microinstruction. Conditional
branching is obtained by using part of the microinstruction to select a specific
status bit in order to determine its condition. An external address is transferred
into control memory via a mapping logic circuit. The return address for a sub-
routine is stored in a special register whose value is then used when the micro-
program wishes to return from the subroutine.

Conditional Branching
The branch logic of Fig. 7-2 provides decision-making capabilities in the con-
trol unit. The status conditions are special bits in the system that provide
parameter information such as the carry-out of an adder, the sign bit of a num-
ber, the mode bits of an instruction, and input or output status conditions.
Information in these bits can be tested and actions initiated based on their con-
dition: whether their value is 1 or 0. The status bits, together with the field in
the microinstruction that specifies a branch address, control the conditional
branch decisions generated in the branch logic.

SECTION 7-2 Address Sequencing 219

special bits

Chapter07.qxd 2/2/2007 6:31 PM Page 219

EON
PreMedia

CONFIRMING PGS

The branch logic hardware may be implemented in a variety of ways. The
simplest way is to test the specified condition and branch to the indicated
address if the condition is met; otherwise, the address register is incremented.
This can be implemented with a multiplexer. Suppose that there are eight status
bit conditions in the system. Three bits in the microinstruction are used to spec-
ify any one of eight status bit conditions. These three bits provide the selection
variables for the multiplexer. If the selected status bit is in the 1 state, the output
of the multiplexer is 1; otherwise, it is 0. A 1 output in the multiplexer generates
a control signal to transfer the branch address from the microinstruction into the
control address register. A 0 output in the multiplexer causes the address register

220 CHAPTER SEVEN Microprogrammed Control

Instruction code

Mapping
logic

Status
bits

MUX
select

Branch
logic

Clock Control address register
(CAR)

Incrementer

Control memory

Select a status
bit

Branch address

Microoperations

Multiplexes

Subroutine
register
(SBR)

Figure 7-2 Selection of address for control memory.

branch logic

Chapter07.qxd 2/2/2007 6:31 PM Page 220

EON
PreMedia

CONFIRMING PGS

to be incremented. In this configuration, the microprogram follows one of two
possible paths, depending on the value of the selected status bit.

An unconditional branch microinstruction can be implemented by load-
ing the branch address from control memory into the control address register.
This can be accomplished by fixing the value of one status bit at the input of
the multiplexer, so it is always equal to 1. A reference to this bit by the status
bit select lines from control memory causes the branch address to be loaded
into the control address register unconditionally.

Mapping of Instruction
A special type of branch exists when a microinstruction specifies a branch
to the first word in control memory where a microprogram routine for an instruc-
tion is located. The status bits for this type of branch are the bits in the operation
code part of the instruction. For example, a computer with a simple instruction
format as shown in Fig. 7-3 has an operation code of four bits which can specify
up to 16 distinct instructions. Assume further that the control memory has 128
words, requiring an address of seven bits. For each operation code there exists a
microprogram routine in control memory that executes the instruction. One sim-
ple mapping process that converts the 4-bit operation code to a 7-bit address for
control memory is shown in Fig. 7-3. This mapping consists of placing a 0 in the
most significant bit of the address, transferring the four operation code bits, and
clearing the two least significant bits of the control address register. This provides
for each computer instruction a microprogram routine with a capacity of four
microinstructions. If the routine needs more than four microinstructions, it can
use addresses 1000000 through 1111111. If it uses fewer than four microinstruc-
tions, the unused memory locations would be available for other routines.

One can extend this concept to a more general mapping rule by using a
ROM to specify the mapping function. In this configuration, the bits of the
instruction specify the address of a mapping ROM. The contents of the map-
ping ROM give the bits for the control address register. In this way the micro-
program routine that executes the instruction can be placed in any desired
location in control memory. The mapping concept provides flexibility for
adding instructions for control memory as the need arises.

SECTION 7-2 Address Sequencing 221

Computer instruction:

Mapping bits:

Opcode

address

0 � � � � 0 0

0 1 0 1 1 0 0

0 1 1 1

Microinstruction address:

Figure 7-3 Mapping from instruction code to microinstruction address.

Chapter07.qxd 2/2/2007 6:31 PM Page 221

EON
PreMedia

CONFIRMING PGS

The mapping function is sometimes implemented by means of an inte-
grated circuit called programmable logic device or PLD. A PLD is similar to
ROM in concept except that it uses AND and OR gates with internal electronic
fuses. The interconnection between inputs, AND gates, OR gates, and outputs
can be programmed as in ROM. A mapping function that can be expressed in
terms of Boolean expressions can be implemented conveniently with a PLD.

Subroutines
Subroutines are programs that are used by other routines to accomplish a par-
ticular task. A subroutine can be called from any point within the main body
of the microprogram. Frequently, many microprograms contain identical sec-
tions of code. Microinstructions can be saved by employing subroutines that
use common sections of microcode. For example, the sequence of microoper-
ations needed to generate the effective address of the operand for an instruc-
tion is common to all memory reference instructions. This sequence could be
a subroutine that is called from within many other routines to execute the
effective address computation.

Microprograms that use subroutines must have a provision for storing
the return address during a subroutine call and restoring the address during a
subroutine return. This may be accomplished by placing the incremented out-
put from the control address register into a subroutine register and branching
to the beginning of the subroutine. The subroutine register can then become
the source for transferring the address for the return to the main routine. The
best way to structure a register file that stores addresses for subroutines is to
organize the registers in a last-in, first-out (LIFO) stack. The use of a stack in
subroutine calls and returns is explained in more detail in Sec. 8-7.

7-3 Microprogram Example
Once the configuration of a computer and its microprogrammed control unit
is established, the designer’s task is to generate the microcode for the control
memory. This code generation is called microprogramming and is a process
similar to conventional machine language programming. To appreciate this
process, we present here a simple digital computer and show how it is micro-
programmed. The computer used here is similar but not identical to the basic
computer introduced in Chap. 5.

Computer Configuration
The block diagram of the computer is shown in Fig. 7-4. It consists of two
memory units: a main memory for storing instructions and data, and a con-
trol memory for storing the microprogram. Four registers are associated with
the processor unit and two with the control unit. The processor registers are

222 CHAPTER SEVEN Microprogrammed Control

subroutine register

Chapter07.qxd 2/2/2007 6:31 PM Page 222

EON
PreMedia

CONFIRMING PGS

program counter PC, address register AR, data register DR , and accumulator
register AC. The function of these registers is similar to the basic computer
introduced in Chap. 5 (see Fig. 5-3). The control unit has a control address reg-
ister CAR and a subroutine register SBR. The control memory and its registers
are organized as a microprogrammed control unit, as shown in Fig. 7-2.

The transfer of information among the registers in the processor is done
through multiplexers rather than a common bus. DR can receive information
from AC, PC, or memory. AR can receive information from PC or DR. PC can
receive information only from AR. The arithmetic, logic, and shift unit performs

SECTION 7-3 Microprogram Example 223

MUX

10 0

10 0

15 0

15 0

AR

Memory
2048 � 16

MUX

DR

Arithmetic
logic and
shift unit

AC

Address

PC

SBR
6 0 6 0

CAR

Control memory
128 � 20

Control unit

Figure 7-4 Computer hardware fonfiguration.

Chapter07.qxd 2/2/2007 6:31 PM Page 223

EON
PreMedia

CONFIRMING PGS

microoperations with data from AC and DR and places the result in AC. Note
that memory receives its address from AR. Input data written to memory come
from DR, and data read from memory can go only to DR.

The computer instruction format is depicted in Fig. 7-5(a). It consists
of three fields: a 1-bit field for indirect addressing symbolized by I, a 4-bit
operation code (opcode), and an 11-bit address field. Figure 7-5(b) lists four of
the 16 possible memory-reference instructions. The ADD instruction adds the
content of the operand found in the effective address to the content of AC. The
BRANCH instruction causes a branch to the effective address if the operand
in AC is negative. The program proceeds with the next consecutive instruction
if AC is not negative. The AC is negative if its sign bit (the bit in the leftmost
position of the register) is a 1. The STORE instruction transfers the content of
AC into the memory word specified by the effective address. The EXCHANGE
instruction swaps the data between AC and the memory word specified by the
effective address.

It will be shown subsequently that each computer instruction must be
microprogrammed. In order not to complicate the microprogramming exam-
ple, only four instructions are considered here. It should be realized that 12
other instructions can be included and each instruction must be micropro-
grammed by the procedure outlined below.

Microinstruction Format
The microinstruction format for the control memory is shown in Fig. 7-6. The
20 bits of the microinstruction are divided into four functional parts. The three
fields Fl, F2, and F3 specify microoperations for the computer. The CD field

224 CHAPTER SEVEN Microprogrammed Control

(a) Instruction format

(b) Four computer instructions

15

I Opcode Address

14 11 10 0

EA is the effective address

 Symbol Opcode Description

ADD 0000 AC → AC + M [EA]

BRANCH 0001 If (AC < 0) then (PC ← EA)

STORE 0010 M [EA] ← AC

EXCHANGE 0011 AC ← M [EA], M [EA] ← AC

Figure 7-5 Computer instructions.

instruction format

microinstruction
format

Chapter07.qxd 2/2/2007 6:31 PM Page 224

EON
PreMedia

CONFIRMING PGS

selects status bit conditions. The BR field specifies the type or branch to be
used. The AD field contains a branch address. The address field is seven bits
wide, since the control memory has 128 � 27 words.

The microoperations are subdivided into three fields of three bits each.
The three bits in each field are encoded to specify seven distinct microopera-
tions as listed in Table 7-1. This gives a total of 21 microoperations. No more
than three microoperations can be chosen for a microinstruction, one from
each field. If fewer than three microoperations are used, one or more of the
fields will use the binary code 000 for no operation. As an illustration, a microin-
struction can specify two simultaneous microoperations from F2 and F3 and
none from F1.

DR ← M [AR] with F2 � 100

and PC ← PC � 1 with F3 � 101

The nine bits of the microoperation fields will then be 000 100 101. It is impor-
tant to realize that two or more conflicting microoperations cannot be speci-
fied simultaneously. For example, a microoperation field 010 001 000 has no
meaning because it specifies the operations to clear AC to 0 and subtract DR
from AC at the same time.

Each microoperation in Table 7-1 is defined with a register transfer state-
ment and is assigned a symbol for use in a symbolic microprogram. All trans-
fer-type microoperations symbols use five letters. The first two letters
designate the source register, the third letter is always a T, and the last two let-
ters designate the destination register. For example, the microoperation that
specifies the transfer AC ← DR (F1 � 100) has the symbol DRTAC, which
stands for a transfer from DR to AC.

The CD (condition) field consists of two bits which are encoded to spec-
ify four status bit conditions as listed in Table 7-1. The first condition is always
a 1, so that a reference to CD � 00 (or the symbol U) will always find the con-
dition to be true. When this condition is used in conjunction with the BR
(branch) field, it provides an unconditional branch operation. The indirect bit

SECTION 7-3 Microprogram Example 225

3

F1 F2 F3

F1, F2, F3: Microoperation fields

CD: Condition for branching

BR: Branch field

AD: Address field

CD BR AD

3 3 2 2 7

Figure 7-6 Microinstruction code format (20 bits).

microoperations

condition field

Chapter07.qxd 2/2/2007 6:31 PM Page 225

EON
PreMedia

CONFIRMING PGS

226 CHAPTER SEVEN Microprogrammed Control

F1 Microoperation Symbol

000 None NOP
001 AC ← AC � DR ADD
010 AC ← 0 CLRAC
011 AC ← AC � 1 INCAC
100 AC ← DR DRTAC
101 AR ← DR(0�l0) DRTAR
110 AR ← PC PCTAR
111 M [AR] ← DR WRITE

F2 Microoperation Symbol

000 None NOP
001 AC ← AC � DR SUB
010 AC ← AC � DR OR
011 AC ← AC � DR AND
100 DR ← M [AR] READ
101 DR ← AC ACTDR
110 DR ← DR � 1 INCDR
111 DR(0�10) ← PC PCTDR

F3 Microoperation Symbol

000 None NOP
001 AC ← AC � DR XOR
010 AC ← AC COM
011 AC ← shl AC SHL
100 AC ← shr AC SHR
101 PC ← PC � 1 INCPC
110 PC ← AR ARTPC
111 Reserved

TABLE 7-1 Symbols and Binary Code for Microinstruction Fields

CD Condition Symbol Comments

00 Always � 1 U Unconditional branch
01 DR (15) I Indirect address bit
10 AC (15) S Sign bit of AC
11 AC � 0 Z Zero value in AC

BR Symbol Function

00 JMP CAR ← AD if condition � 1
CAR ← CAR � 1 if condition � 0

01 CALL CAR ← AD, SBR ← CAR � 1 if condition � 1
CAR ← CAR � 1 if condition � 0

10 RET CAR ← SBR (Return from subroutine)
11 MAP CAR (2�5) ← DR (11�14), CAR(0, l,6) ← 0

Chapter07.qxd 2/2/2007 6:31 PM Page 226

EON
PreMedia

CONFIRMING PGS

I is available from bit 15 of DR after an instruction is read from memory. The
sign bit of AC provides the next status bit. The zero value, symbolized by Z, is
a binary variable whose value is equal to 1 if all the bits in AC are equal to
zero. We will use the symbols U, I, S, and Z for the four status bits when we
write microprograms in symbolic form.

The BR (branch) field consists of two bits. It is used, in conjunction with
the address field AD, to choose the address of the next microinstruction. As
shown in Table 7-1, when BR � 00, the cuntrol performs a jump (JMP) oper-
ation (which is similar to a branch), and when BR � 01, it performs a call to
subroutine (CALL) operation. The two operations are identical except that a
call microinstruction stores the return address in the subroutine register SBR.
The jump and call operations depend on the value of the CD field. It the sta-
tus bit condition specified in the CD field is equal to 1, the next address in the
AD field is transferred to the control address register CAR. Otherwise, CAR is
incremented by 1.

The return from subroutine is accomplished with a BR field equal to 10.
This causes the transfer of the return address from SBR to CAR. The mapping.
from the operation code bits of the instruction to an address for CAR is
accomplished when the BR field is equal to 11. This mapping is as depicted in
Fig. 7-3. The bits of the operation code are in DR(11–14) after an instruction is
read from memory. Note that the List two conditions in the BR field are inde-
pendent of the values in the CD and AD fields.

Symbolic Microinstructions
The symbols defined in Table 7-1 can be used to specify microinstructions in
symbolic form. A symbolic microprogram can be translated into its binary
equivalent by means of an assembler. A microprogram assembler is similar
in concept to a conventional computer assembler as defined in Sec. 6-3. The
simplest and most straightforward way to formulate an assembly language
for a microprogram is to define symbols for each field of the microinstruc-
tion and to give users the capability for defining their own symbolic
addresses.

Each line of the assembly language microprogram defines a symbolic
microinstruction. Each symbolic microinstruction is divided into five fields:
label, microoperations, CD, BR, and AD. The fields specify the following
information:

1. The label field may be empty or it may specify a symbolic address. A
label is terminated with a colon (:).

2. The microoperations field consists of one, two, or three symbols, sepa-
rated by commas, from those defined in Table 7-1. There may be no
more than one symbol from each F field. The NOP symbol is used
when the microinstruction has no microoperations. This will be trans-
lated by the assembler to nine zeros.

SECTION 7-3 Microprogram Example 227

branch field

Chapter07.qxd 2/2/2007 6:31 PM Page 227

EON
PreMedia

CONFIRMING PGS

3. The CD field has one of the letters U, I, S, or Z.
4. The BR field contains one of the four symbols defined in Table 7-1.
5. The AD field specifies a value for the address field of the microin-

struction in one of three possible ways:
a. With a symbolic address, which must also appear as a label.
b. With the symbol NEXT to designate the next address in sequence.
c. When the BR field contains a RET or MAP symbol, the AD field is

left empty and is converted to seven zeros by the assembler.

We will use also the pseudoinstruction ORG to define the origin, or first
address, of a microprogram routine. Thus the symbol ORG 64 informs the
assembler to place the next microinstruction in control memory at decimal
address 64, which is equivalent to the binary address 1000000.

The Fetch Routine
The control memory has 128 words, and each word contains 20 bits. To micro-
program the control memory, it is necessary to determine the bit values of
each of the 128 words. The first 64 words (addresses 0 to 63) are to be occu-
pied by the routines for the 16 instructions. The last 64 words may be used for
any other purpose. A convenient starting location for the fetch routine is
address 64. The microinstructions needed for the fetch routine are

AR ← PC
DR ← M[AR], PC ← PC �1
AR ← DR (0�10), CAR(2�5) ← DR (11�14), CAR (0,1,6) ← 0

The address of the instruction is transferred from PC to AR and the instruction
is then read from memory into DR . Since no instruction register is available,
the instruction code remains in DR. The address part is transferred to AR and
then control is transferred to one of 16 routines by mapping the operation
code part of the instruction from DR into CAR.

The fetch routine needs three microinstructions, which are placed in con-
trol memory at addresses 64, 65, and 66. Using the assembly language con-
ventions defined previously, we can write the symbolic microprogram for the
fetch routine as follows:

ORG 64
FETCH: PCTAR U JMP NEXT

READ, INCPC U JMP NEXT
DRTAR U MAP

The translation of the symbolic microprogram to binary produces the
following binary microprogram. The bit values are obtained from Table 7-1.

228 CHAPTER SEVEN Microprogrammed Control

address field

ORG

fetch and decode

Chapter07.qxd 2/2/2007 6:31 PM Page 228

EON
PreMedia

CONFIRMING PGS

The three microinstructions that constitute the fetch routine have been
listed in three different representations. The register transfer representation
shows the internal register transfer operations that each microinstruction imple-
ments. The symbolic representation is useful for writing microprograms in an
assembly language format. The binary representation is the actual internal con-
tent that must be stored in control memory. It is customary to write micropro-
grams in symbolic form and then use an assembler program to obtain a
translation to binary.

Symbolic Microprogram
The execution of the third (MAP) microinstruction in the fetch routine results
in a branch to address 0xxxx00, where xxxx are the four bits of the operation
code. For example, if the instruction is an ADD instruction whose operation
code is 0000, the MAP microinstruction will transfer to CAR the address
0000000, which is the start address for the ADD routine in control memory.
The first address for the BRANCH and STORE routines are 0 0001 00 (dec-
imal 4) and 0 0010 00 (decimal 8), respectively. The first address for the other
13 routines are at address values 12, 16, 20, . . . , 60. This gives four words in
control memory for each routine.

In each routine we must provide microinstructions for evaluating the
effective address and for executing the instruction. The indirect address mode
is associated with all memory-reference instructions. A saving in the number
of control memory words may be achieved if the microinstructions for the
indirect address are stored as a subroutine. This subroutine, symbolized by
INDRCT, is located right after the fetch routine, as shown in Table 7-2. The
table also shows the symbolic microprogram for the fetch routine and the
microinstruction routines that execute four computer instructions.

To see how the transfer and return from the indirect subroutine occurs,
assume that the MAP microinstruction at the end of the fetch routine caused
a branch to address 0, where the ADD routine is stored. The first microin-
struction in the ADD routine calls subroutine INDRCT, conditioned on sta-
tus bit I. If I � 1, a branch to INDRCT occurs and the return address (address
1 in this case) is stored in the subroutine register SBR. The INDRCT subrou-
tine has two microinstructions:

INDRCT: READ U JMP NEXT
DRTAR U RET

Binary
Address Fl F2 F3 CD BR AD

1000000 110 000 000 00 00 1000001
1000001 000 100 101 00 00 1000010
1000010 101 000 000 00 11 0000000

SECTION 7-3 Microprogram Example 229

Chapter07.qxd 2/2/2007 6:31 PM Page 229

EON
PreMedia

CONFIRMING PGS

Remember that an indirect address considers the address part of the
instruction as the address where the effective address is stored rather than
the address of the operand. Therefore, the memory has to be accessed to get
the effective address, which is then transferred to AR. The return from sub-
routine (RET) transfers the address from SBR to CAR, thus returning to the
second microinstruction of the ADD routine.

The execution of the ADD instruction is carried out by the microin-
structions at addresses 1 and 2. The first microinstruction reads the operand
from memory into DR. The second microinstruction performs an add micro-
operation with the content of DR and AC and then jumps back to the begin-
ning of the fetch routine.

230 CHAPTER SEVEN Microprogrammed Control

TABLE 7-2 Symbolic Microprogram (Partial)

Label Microoperations CD BR AD

ORG 0
ADD: NOP I CALL INDRCT

READ U JMP NEXT
ADD U JMP FETCH

ORG 4
BRANCH: NOP S JMP OVER

NOP U JMP FETCH
OVER: NOP I CALL INDRCT

ARTPC U JMP FETCH

ORG 8
STORE: NOP I CALL INDRCT

ACTDR U JMP NEXT
WRITE U JMP FETCH

ORG 12
EXCHANGE: NOP I CALL INDRCT

READ U JMP NEXT
ACTDR, DRTAC U JMP NEXT
WRITE U JMP FETCH

ORG 64
FETCH: PCTAR U JMP NEXT

READ, INCPC U JMP NEXT
DRTAR U MAP

INDRCT: READ U JMP NEXT
DRTAR U RET

execution of
instructions

Chapter07.qxd 2/2/2007 6:31 PM Page 230

EON
PreMedia

CONFIRMING PGS

The BRANCH instruction should cause a branch to the effective address
if AC � 0. The AC will be less than zero if its sign is negative, which is detected
from status bit 5 being a 1. The BRANCH routine in Table 7-2 starts by check-
ing the value of S. If S is equal to 0, no branch occurs and the next microin-
struction causes a jump back to the fetch routine without altering the content
of PC. If S is equal to 1, the first JMP microinstruction transfers control to loca-
tion OVER. The microinstruction at this location calls the INDRCT subrou-
tine if I � 1. The effective address is then transferred from AR to PC and the
microprogram jumps back to the fetch routine.

The STORE routine again uses the INDRCT subroutine if I � 1. The con-
tent of AC is transferred into DR. A memory write operation is initiated to store
the content of DR in a location specified by the effective address in AR.

The EXCHANGE routine reads the operand from the effective address
and places it in DR. The contents of DR and AC are interchanged in the third
microinstruction. This interchange is possible when the registers are of the
edge-triggered type (see Fig. 1-23). The original content of AC that is now in
DR is stored back in memory.

Note that Table 7-2 contains a partial list of the microprogram. Only four
out of 16 possible computer instructions have been microprogrammed. Also,
control memory words at locations 69 to 127 have not been used. Instructions
such as multiply, divide, and others that require a long sequence of microop-
erations will need more than four microinstructions for their execution.
Control memory words 69 to 127 can be used for this purpose.

Binary Microprogram
The symbolic microprogram is a convenient form for writing microprograms
in a way that people can read and understand. But this is not the way that the
microprogram is stored in memory. The symbolic microprogram must be
translated to binary either by means of an assembler program or by the user
if the microprogram is simple enough as in this example.

The equivalent binary form of the microprogram is listed in Table 7-3.
The addresses for control memory are given in both decimal and binary. The
binary-content of each microinstruction is derived from the symbols and their
equivalent binary values as defined in Table 7-1.

Note that address 3 has no equivalent in the symbolic microprogram since
the ADD routine has only three microinstructions at addresses 0, 1, and 2. The
next routine starts at address 4. Even though address 3 is not used, some binary
value must be specified for each word in control memory. We could have spec-
ified all 0’s in the word since this location will never be used. However, if some
unforeseen error occurs, or if a noise signal sets CAR to the value of 3, it will be
wise to jump to address 64, which is the beginning of the fetch routine.

The binary microprogram listed in Table 7-3 specifies the word content
of the control memory. When a ROM is used for the control memory, the

SECTION 7-3 Microprogram Example 231

control memory

Chapter07.qxd 2/2/2007 6:31 PM Page 231

EON
PreMedia

CONFIRMING PGS

microprogram binary list provides the truth table for fabricating the unit. This
fabrication is a hardware process and consists of creating a mask for the ROM
so as to produce the l’s and 0’s for each word. The bits of ROM are fixed once
the internal links are fused during the hardware production. The ROM is
made of IC packages that can be removed if necessary and replaced by other
packages. To modify the instruction set of the computer, it is necessary to gen-
erate a new microprogram and mask a new ROM. The old one can be
removed and the new one inserted in its place.

If a writable control memory is employed, the ROM is replaced by a
RAM. The advantage of employing a RAM for the control memory is that the
microprogram can be altered simply by writing a new pattern of l’s and 0’s
without resorting to hardware procedures. A writable control memory pos-
sesses the flexibility of choosing the instruction set of a computer dynamically
by changing the microprogram under processor control. However, most
microprogrammed systems use a ROM for the control memory because it is

232 CHAPTER SEVEN Microprogrammed Control

TABLE 7-3 Binary Microprogram for Control Memory (Partial)

Address Binary Microinstruction
Micro

Routine Decimal Binary Fl F2 F3 CD BR AD

ADD 0 0000000 000 000 000 01 01 1000011
1 0000001 000 100 000 00 00 0000010
2 0000010 001 000 000 00 00 1000000
3 0000011 000 000 000 00 00 1000000

BRANCH 4 0000100 000 000 000 10 00 0000110
5 0000101 000 000 000 00 00 1000000
6 0000110 000 000 000 01 01 1000011
7 0000111 000 000 110 00 00 1000000

STORE 8 0001000 000 000 000 01 01 1000011
9 0001001 000 101 000 00 00 0001010

10 0001010 111 000 000 00 00 1000000
11 0001011 000 000 000 00 00 1000000

EXCHANGE 12 0001100 000 000 000 01 01 1000011
13 0001101 001 000 000 00 00 0001110
14 0001110 100 101 000 00 00 0001111
15 0001111 111 000 000 00 00 1000000

FETCH 64 1000000 110 000 000 00 00 1000001
65 1000001 000 100 101 00 00 1000010
66 1000010 101 000 000 00 11 0000000

INDRCT 67 1000011 000 100 000 00 00 1000100
68 1000100 101 000 000 00 10 0000000

Chapter07.qxd 2/2/2007 6:31 PM Page 232

EON
PreMedia

CONFIRMING PGS

cheaper and faster than a RAM and also to prevent the occasional user from
changing the architecture of the system.

7-4 Design of Control Unit
The bits of the microinstruction are usually divided into fields, with each field
defining a distinct, separate function. The various fields encountered in
instruction formats provide control bits to initiate microoperations in the sys-
tem, special bits to specify the way that the next address is to be evaluated,
and an address field for branching. The number of control bits that initiate
microoperations can be reduced by grouping mutually exclusive variables
into fields and encoding the k bits in each field to provide 2k microoperations.
Each field requires a decoder to produce the corresponding control signals.
This method reduces the size of the microinstruction bits but requires addi-
tional hardware external to the control memory. It also increases the delay
time of the control signals because they must propagate through the decod-
ing circuits.

The encoding of control bits was demonstrated in the programming
example of the preceding section. The nine bits of the microoperation field
are divided into three subfields of three bits each. The control memory out-
put of each subfield must be decoded to provide the distinct microoperations.
The outputs of the decoders are connected to the appropriate inputs in the
processor unit.

Figure 7-7 shows the three decoders and some of the connections that
must be made from their outputs. Each of the three fields of the microinst-
ruction presently available in the output of control memory are decoded with
a 3 � 8 decoder to provide eight outputs. Each of these outputs must be con-
nected to the proper circuit to initiate the corresponding microoperation as
specified in Table 7-1. For example, when F1 � 101 (binary 5), the next clock
pulse transition transfers the content of DR(0–10) to AR (symbolized by
DRTAR in Table 7-1). Similarly, when F1 � 110 (binary 6) there is a transfer
from PC to AR (symbolized by PCTAR). As shown in Fig. 7-7, outputs 5 and
6 of decoder F1 are connected to the load input of AR so that when either one
of these outputs is active, information from the multiplexers is transferred to
AR. The multiplexers select the information from DR when output 5 is active
and from PC when output 5 is inactive. The transfer into AR occurs with a
clock pulse transition only when output 5 or output 6 of the decoder are active.
The other outputs of the decoders that initiate transfers between registers must
be connected in a similar fashion.

The arithmetic logic shift unit can be designed as in Figs. 5-19 and 5-20.
Instead of using gates to generate the control signals marked by the symbols
AND, ADD, and DR in Fig. 5-19, these inputs will now come from the out-
puts of the decoders associated with the symbols AND, ADD, and DRTAC,

SECTION 7-4 Design of Control Unit 233

decoding of F fields

arithmetic logic
shift unit

Chapter07.qxd 2/2/2007 6:31 PM Page 233

EON
PreMedia

CONFIRMING PGS

234 CHAPTER SEVEN Microprogrammed Control

respectively, as shown in Fig. 7-7. The other outputs of the decoders that are
associated with an AC operation must also be connected to the arithmetic logic
shift unit in a similar fashion.

Microprogram Sequencer
The basic components of a microprogrammed control unit are the control
memory and the circuits that select the next address. The address selection
part is called a microprogram sequencer. A microprogram sequencer can be
constructed with digital functions to suit a particular application. However,
just as there are large ROM units available in integrated circuit packages, so
are general-purpose sequencers suited for the construction of microprogram
control units. To guarantee a wide range of acceptability, an integrated circuit
sequencer must provide an internal organization that can be adapted to a wide
range of applications.

F1

7 6 5 4 3 2 1 0

3 � 8 decoder

ADD

Select Multiplexers

AR

AC
Load

Clock
Load

From
PC

From
DR � (0 – 10)

DRTAC

D
R

TA
R

P
C

TA
R

ADD

7 6 5 4 3 2 1 0

3 � 8 decoder

Arithmetic
logic shift

unit

7 6 5 4 3 2 1 0

3 � 8 decoder

F2 F3

Figure 7-7 Decoding of microoperation fields.

Chapter07.qxd 2/2/2007 6:31 PM Page 234

EON
PreMedia

CONFIRMING PGS

SECTION 7-4 Design of Control Unit 235

The purpose of a microprogram sequencer is to present an address to
the control memory so that a microinstruction may be read and executed.
The next-address logic of the sequencer determines the specific address
source to be loaded into the control address register. The choice of the address
source is guided by the next-address information bits that the sequencer
receives from the present microinstruction. Commercial sequencers include
within the unit an internal register stack used for temporary storage of
addresses during microprogram looping and subroutine calls. Some sequencers
provide an output register which can function as the address register for the
control memory.

To illustrate the internal structure of a typical microprogram sequencer
we will show a particular unit that is suitable for use in the microprogram com-
puter example developed in the preceding section. The block diagram of the
microprogram sequencer is shown in Fig. 7-8. The control memory is included
in the diagram to show the interaction between the sequencer and the mem-
ory attached to it. There are two multiplexers in the circuit. The first multi-
plexer selects an address from one of four sources and routes it into a control
address register CAR. The second multiplexer tests the value of a selected sta-
tus bit and the result of the test is applied to an input logic circuit. The output
from CAR provides the address for the control memory. The content of CAR
is incremented and applied to one of the multiplexer inputs and to the sub-
routine register SBR. The other three inputs to multiplexer number 1 come
from the address field of the present microinstruction, from the output of SBR ,
and from an external source that maps the instruction. Although the diagram
shows a single subroutine register, a typical sequencer will have a register
stack about four to eight levels deep. In this way, a number of subroutines can
be active at the same time. A push and pop operation, in conjunction with a
stack pointer, stores and retrieves the return address during the call and return
microinstructions.

The CD (condition) field of the microinstruction selects one of the status
bits in the second multiplexer. If the bit selected is equal to 1, the T (test) vari-
able is equal to 1; otherwise, it is equal to 0. The T value together with the two
bits from the BR (branch) field go to an input logic circuit. The input logic in
a particular sequencer will determine the type of operations that are available
in the unit. Typical sequencer operations are: increment, branch or jump, call
and return from subroutine, load an external address, push or pop the stack,
and other address sequencing operations. With three inputs, the sequencer can
provide up to eight address sequencing operation. Some commercial
sequencers have three or four inputs in addition to the T input and thus pro-
vide a wider range of operations.

The input logic circuit in Fig. 7-8 has three inputs, I0, I1, and T, and three
outputs, S0, S1, and L. Variables S0 and S1 select one of the source addresses
for CAR. Variable L enables the load input in SBR. The binary values of the
two selection variables determine the path in the multiplexer. For example,
with S1, S0 � 10, multiplexer input number 2 is selected and establishes

design of input logic

Chapter07.qxd 2/2/2007 6:31 PM Page 235

EON
PreMedia

CONFIRMING PGS

a transfer path from SBR to CAR. Note that each of the four inputs as well as
the output of MUX 1 contains a 7-bit address.

The truth table for the input logic circuit is shown in Table 7-4. Inputs I1
and I0 are identical to the bit values in the BR field. The function listed in each
entry was defined in Table 7-1. The bit values for S1 and S0 are determined
from the stated function and the path in the multiplexer that establishes the
required transfer. The subroutine register is loaded with the incremented value
of CAR during a call microinstruction (BR � 01) provided that the status bit
condition is satisfied (T � 1). The truth table can be used to obtain the simpli-
fied Boolean functions for the input logic circuit:

S1 � I1

S0 � I1 I0 � I�1T
L � I�1I0T

236 CHAPTER SEVEN Microprogrammed Control

External
(MAP)

L

l
l
S
Z

3 2 1 0
Input
logic

MUX2
Select

Test

Control memory

Microops CD BR AD

CARClock

MUX-1 SBR
Load

Incrementer

I0
I1 S1

S0T

Figure 7-8 Microprogram sequencer for a control memory.

Chapter07.qxd 2/2/2007 6:31 PM Page 236

EON
PreMedia

CONFIRMING PGS

The circuit can be constructed with three AND gates, an OR gate, and
an inverter.

Note that the incrementer circuit in the sequencer of Fig. 7-8 is not a
counter constructed with flip-flops but rather a combinational circuit con-
structed with gates. A combinational circuit incrementer can be designed
by cascading a series of half-adder circuits (see Fig. 4-8). The output carry
from one stage must be applied to the input of the next stage. One input in
the first least significant stage must be equal to 1 to provide the increment-by-
one operation.

SECTION 7-4 Design of Control Unit 237

BR Input MUX 1 Load SBR
Field I1 I0 T S1 S0 L

0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0
0 1 0 1 1 1 1 1
1 0 1 0 � 1 0 0
1 1 1 1 � 1 1 0

TABLE 7-4 Input Logic Truth Table for Microprogram Sequencer

PROBLEMS

7-1. What is the difference between a microprocessor and a microprogram? Is it pos-
sible to design a microprocessor without a microprogram? Are all micropro-
grammed computers also microprocessors?

7-2. Explain the difference between hardwired control and microprogrammed
control. Is it possible to have a hardwired control associated with a control
memory?

7-3. Define the following: (a) microoperation; (b) microinstruction; (c) micropro-
gram; (d) microcode.

7-4. The microprogrammed control organization shown in Fig. 7-1 has the fol-
lowing propagation delay times. 40 ns to generate the next address, 10 ns to
transfer the address into the control address register, 40 ns to access the con-
trol memory ROM, 10 ns to transfer the microinstruction into the control
data register, and 40 ns to perform the required microoperations specified by
the control word. What is the maximum clock frequency that the control can
use? What would the clock frequency be if the control data register is not
used?

7-5. The system shown in Fig. 7-2 uses a control memory of 1024 words of 32 bits
each. The microinstruction has three fields as shown in the diagram. The micro-
operations field has 16 bits.

Chapter07.qxd 2/2/2007 6:31 PM Page 237

EON
PreMedia

CONFIRMING PGS

a. How many bits are there in the branch address field and the select field?
b. If there are 16 status bits in the system, how many bits of the branch logic are

used to select a status bit?
c. How many bits are left to select an input for the multiplexers?

7-6. The control memory in Fig. 7-2 has 4096 words of 24 bits each.
a. How mnny bits are there in the control address register?
b. How many bits are there in each of the four inputs, shown going into the mul-

tiplexers?
c. What are the number of inputs in each multiplexer and how many multi-

plexers are needed?

7-7. Using the mapping procedure described in Fig. 7-3, give the first microinstruc-
tion address for the following operation code: (a) 0010; (b) 1011; (c) 1111.

7-8. Formulate a mapping procedure that provides eight consecutive microinstruc-
tions for each routine. The operation code has six bits and the control memory
has 2048 words.

7-9. Explain how the mapping from an instruction code to a microinstruction
address can be done by means of a read-only memory. What is the advantage
of this method compared to the one in Fig. 7-3?

7-10. Why do we need the two multiplexers in the computer hardware configuration
shown in Fig. 7-4? Is there another way that information from multiple sources
can be transferred to a common destination?

7-11. Using Table 7-1, give the 9-bit microoperation field for the following micro-
operations:
a. AC ← AC � 1, DR ← DR � l
b. PC ← PC � 1, DR ← M [AR]
c. DR ← AC, AC ← DR

7-12. Using Table 7-1, convert the following symbolic microoperations to register
transfer statements and to binary.
a. READ, INCPC
b. ACTDR, DRTAC
c. ARTPC, DRTAC, WRITE

7-13. Suppose that we change the ADD routine listed in Table 7-2 to the following two
microinstructions.

ADD: READ I CALL INDR2
ADD U JMP FETCH

What should be subroutine INDR2?

7-14. The following is a symbolic microprogram for an instruction in the computer
defined in Sec. 7-3.

ORG 40
NOP S JMP FETCH
NOP Z JMP FETCH
NOP I CALL INDRCT
ARTPC U JMP FETCH

a. Specify the operation performed when the instruction is executed.
b. Convert the four microinstructions into their equivalent binary form.

238 CHAPTER SEVEN Microprogrammed Control

Chapter07.qxd 2/2/2007 6:31 PM Page 238

EON
PreMedia

CONFIRMING PGS

7-15. The computer of Sec. 7-3 has the following binary microprogram:

a. Translate it to a symbolic microprogram as in Table 7-2. (FETCH is in
address 64 and INDRCT in address 67.)

b. List all the things that will be wrong when this microprogram is executed in
the computer.

7-16. Add the following instructions to the computer of Sec 7-3 (EA is the effective
address). Write the symbolic microprogram for each routine as in Table 7-2.
(Note that AC must not change in value unless the instruction specifies a change
in AC.)

7-17. Write a symbolic microprogram routine for the ISZ (increment and skip if zero)
instruction defined in Chap. 5 (Table 5-4). Use the microinstruction format of
Sec. 7-3. Note that DR � 0 status condition is not available in the CD field of the
computer defined in Sec. 7-3. However, you can exchange AC and DR and check
if AC � 0 with the Z bit.

7-18. Write the symbolic microprogram routines for the BSA (branch and save
address) instructions defined in Chap. 5 (Table 5-4). Use the microinstruction
format of Sec. 7-3. Minimize the number of microinstructions.

7-19. Show how outputs 5 and 6 of decoder F3 in Fig. 7-7 are to be connected to the
program counter PC.

7-20. Show how a 9-bit microoperation field in a microinstruction can be divided into
subfields to specify 46 microoperations. How many microoperations can be
specified in one microinstruction?

Symbol Opcode Symbolic Function Description

AND 0100 AC ← AC � M [EA] AND
SUB 0101 AC ← AC�M [EA] Subtract
ADM 0110 M [EA] ← M [EA] � AC Add to memory
BTCL 0111 AC ← AC � M [EA] Bit clear
BZ 1000 If (AC � 0) then (PC ← EA) Branch if AC zero
SEQ 1001 If (AC � M[EA]) then (PC ← PC � 1) Skip if equal
BPNZ 1010 If (AC > 0) then (PC ← EA) Branch if positive

and nonzero

Address Binary Microinstruction

60 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1
61 1 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0
62 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1
63 1 0 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0

SECTION 7-4 Design of Control Unit 239

AC
,
����←/ R2� ,�,B—,

�

Chapter07.qxd 2/2/2007 6:32 PM Page 239

EON
PreMedia

CONFIRMING PGS

7-21. A computer has 16 registers, an ALU (arithmetic logic unit) with 32 operations,
and a shifter with eight operations, all connected to a common bus system.
a. Formulate a control word for a microoperation.
b. Specify the number of bits in each field of the control word and give a gen-

eral encoding scheme.
c. Show the bits of the control word that specify the microoperation R4 →

R5 � R6.

7-22. Assume that the input logic of the microprogram sequencer of Fig. 7-8 has four
inputs, I2, I1, I0, T (test), and three outputs, S1, S0, and L. The operations that are
performed in the unit are listed in the following table. Design the input logic cir-
cuit using a minimum number of gates.

7-23. Design a 7-bit combinational circuit incrementer for the microprogram
sequencer of Fig. 7-8 (see Fig. 4-8). Modify the incrementer by including a con-
trol input D. When D � 0, the circuit increments by one, but when D � 1, the
circuit increments by two.

7-24. Insert an exclusive-OR gate between MUX 2 and the input logic of Fig. 7-8.
One input to the gate comes from the test output of the multiplexer. The other
input to the gate comes from a bit labeled P (for polarity) in the microinstruction
from control memory. The output of the gate goes to the input T of the input
logic. What does the polarity control P accomplish?

I2 I1 I0 Operation

0 0 0 Increment CAR if T � 1, jump to AD if T � 0
� 0 1 Jump to AD unconditionally
1 0 0 Increment CAR unconditionally
0 1 0 Jump to AD if T � 1, increment CAR if T � 0
1 1 0 Call subroutine if T � 1, increment CAR if T � 0
0 1 1 Return from subroutine unconditionally
1 1 1 Map external address unconditionally

240 CHAPTER SEVEN Microprogrammed Control

REFERENCES

1. Dasgupta, S., Computer Architecture: A Modern Synthesis. Vol. 1. New York: John Wiley, 1989.

2. Gorsline, G. W., Computer Organization: Hardware/Software, 2nd ed. Englewood Cliffs,
NJ: Prentice Hall, 1986.

3. Hamacher, V. C., Z. G. Vranesic, and S. G. Zaky, Computer Organization, 3rd ed.
New York: McGraw-Hill, 1990.

4. Hays, J. F., Computer Architecture and Organization, 2nd ed. New York: McGraw-Hill, 1988.

5. Langholz, G., J. Francioni, and A. Kandel, Elements of Computer Organization.
Englewood Cliffs, NJ: Prentice Hall, 1989.

Chapter07.qxd 2/2/2007 6:32 PM Page 240

EON
PreMedia

CONFIRMING PGS

6. Lewin, M. H., Logic Design and Computer Organization. Reading, MA: Addison-Wesley,
1983.

7. Mano, M. M., Computer Engineering: Hardware Design. Englewood Cliffs, NJ: Prentice Hall,
1988.

8. Rafiquzzaman, M., and R. Chandra, Modern Computer Architecture. St Paul, MN: West
Publishing, 1988.

9. Stallings, W., Computer Organization and Architecture, 2nd ed. New York: Macmillan,
1989.

10. Tanenbaum, A, S., Structured Computer Organization, 3rd ed. Englewood Cliffs, NJ:
Prentice Hall, 1990.

11. Ward, S. A., and R. H. Halstead, Jr., Computation Structures. Cambridge, MA: MIT
Press, 1990.

SECTION 7-4 Design of Control Unit 241

Chapter07.qxd 2/2/2007 6:32 PM Page 241

EON
PreMedia

CONFIRMING PGS

Chapter07.qxd 2/2/2007 6:32 PM Page 242

This page is intentionally left blank.

EON
PreMedia

CONFIRMING PGS

IN THIS CHAPTER

8-1 Introduction
8-2 General Register Organization
8-3 Stack Organization
8-4 Instruction Formats
8-5 Addressing Modes
8-6 Data Transfer and Manipulation
8-7 Program Control
8-8 Reduced Instruction Set Computer (RISC)

8-1 Introduction
The part of the computer that performs the bulk of data-processing operations
is called the central processing unit and is referred to as the CPU. The CPU
is made up of three major parts, as shown in Fig. 8-1. The register set stores
intermediate data used during the execution of the instructions. The arith-
metic logic unit (ALU) performs the required microoperations for executing
the instructions. The control unit supervises the transfer of information among
the registers and instructs the ALU as to which operation to perform.

The CPU performs a variety of functions dictated by the type of instruc-
tions that art Incorporated in the computer. Computer architecture is some-
times defined as the computer structure and behavior as seen by the
programmer that uses machine language instructions. This includes the instruc-
tion formats, addressing modes, the instruction set, and the general organiza-
tion of the CPU registers leading to two computer architectures as reduced
instruction set computer (RISC) and complex instruction set computer (CISC).
Based on memory usage for programs and data, two architectures, namely
nonembedded and embedded are evolved. Nonembedded computer archi-
tectures are basically stored program computer (SPC) architectures in which
programs and data reside in the same memory system. Embedded architec-
tures are basically Harvard computer architectures in which programs and data

243

C H A P T E R E I G H T

Central Processing
Unit

CPU

Chapter08.qxd 2/2/2007 6:34 PM Page 243

EON
PreMedia

CONFIRMING PGS

reside in different memory systems leading to doubling the memory bandwidth.
Example of nonembedded computers are all desktop systems such as personal
computers. Example of embedded computers are microcontroller-based sys-
tems and digital signal processor-based (DSP) systems.

One boundary where the computer designer and the computer program-
mer see the same machine is the part of the CPU associated with the instruction
set. From the designer’s point of view, the computer instruction set provides the
specifications for the design of the CPU. The design of a CPU is a task that in
large part involves choosing the hardware for implementing the machine
instructions. The user who programs the computer in machine or assembly lan-
guage must be aware of the register set, the memory structure, the type of data
supported by the instructions, and the function that each instruction performs.

Design examples of simple CPUs are carried out in Chaps. 5 and 7. This
chapter describes the organization and architecture of the CPU with an
emphasis on the user’s view of the computer. We briefly describe how the reg-
isters communicate with the ALU through buses and explain the operation of
the memory stack. We then present the type of instruction formats available,
the addressing modes used to retrieve data from memory, and typical instruc-
tions commonly incorporated in computers. The last section presents the con-
cept of reduced instruction set computer (RISC).

8-2 General Register Organization
In the programming examples of Chap. 6, we have shown that memory loca-
tions are needed for storing pointers, counters, return addresses, temporary
results, and partial products during multiplication. Having to refer to memory
locations for such applications is time consuming because memory access is
the most time-consuming operation in a computer. It is more convenient and
more efficient to store these intermediate values in processor registers. When
a large number of registers are included in the CPU, it is most efficient to con-
nect them through a common bus system. The registers communicate with
each other not only for direct data transfers, but also while performing various
microoperations. Hence it is necessary to provide a common unit that can per-
form all the arithmetic, logic, and shift microoperations in the processor.

244 CHAPTER EIGHT Central Processing Unit

Control

Register set

Arithmetic
logic unit

(ALU)

Figure 8-1 Major components of CPU.

Chapter08.qxd 2/2/2007 6:34 PM Page 244

EON
PreMedia

CONFIRMING PGS

SECTION 8-2 General Register Organization 245

A bus organization for seven CPU registers is shown in Fig. 8-2. The out-
put of each register is connected to two multiplexers (MUX) to form the two
buses A and B. The selection lines in each multiplexer select one register or the
input data for the particular bus. The A and B buses form the inputs to a com-
mon arithmetic logic unit (ALU). The operation selected in the ALU deter-
mines the arithmetic or logic microoperation that is to be performed. The result
of the microoperation is available for output data and also goes into the inputs
of all the registers. The register that receives the information from the output
bus is selected by a decoder. The decoder activates one of the register load
inputs, thus providing a transfer path between the data in the output bus and
the inputs of the selected destination register.

The control unit that operates the CPU bus system directs the informa-
tion flow through the registers and ALU by selecting the various components
in the system. For example, to perform the operation

R1 ← R2 � R 3

the control must provide binary selection variables to the following selector
inputs:

1. MUX A selector (SELA): to place the content of R2 into bus A.
2. MUX B selector (SELB): to place the content of R3 into bus B.
3. ALU operation selector (OPR): to provide the arithmetic addition A � B.
4. Decoder destination selector (SELD): to transfer the content of the out-

put bus into R1.

The four control selection variables are generated in the control unit and
must be available at the beginning of a clock cycle. The data from the two
source registers propagate through the gates in the multiplexers and the ALU,
to the output bus, and into the inputs of the destination register, all during the
clock cycle interval. Then, when the next clock transition occurs, the binary
information from the output bus is transferred into R1. To achieve a fast
response time, the ALU is constructed with high-speed circuits. The buses are
implemented with multiplexers or three-state gates, as shown in Sec. 4-3.

Control Word
There are 14 binary selection inputs in the unit, and their combined value spec-
ifies a control word. The 14-bit control word is defined in Fig. 8-2(b). It consists of
four fields. Three fields contain three bits each, and one field has five bits. The
three bits of SELA select a source register for the A input of the ALU. The three
bits of SELB select a register for the B input of the ALU. The three bits of SELD
select a destination register using the decoder and its seven load outputs. The
five bits of OPR select one of the operations in the ALU. The 14-bit control
word when applied to the selection inputs specify a particular microoperation.

control word

bus system

Chapter08.qxd 2/2/2007 6:34 PM Page 245

EON
PreMedia

CONFIRMING PGS

246 CHAPTER EIGHT Central Processing Unit

Clock

Load
(7 lines) SELA

SELD

OPR

3 � 8
decoder A bus B bus

MUX SELBMUX

Arithmetic logic unit
(ALU)

Output

(a) Block diagram

3 3 3 5
SELDSELBSELA

(b) Control word

OPR

Input

R1

R2

R3

R4

R5

R6

R7

Figure 8-2 Register set with common ALU.

Chapter08.qxd 2/2/2007 6:34 PM Page 246

EON
PreMedia

CONFIRMING PGS

The encoding of the register selections is specified in Table 8-1. The 3-bit
binary code listed in the first column of the table specifies the binary code for
each of the three fields. The register selected by fields SELA, SELB, and
SELD is the one whose decimal number is equivalent to the binary number
in the code. When SELA or SELB is 000, the corresponding multiplexer
selects the external input data. When SELD � 000, no destination register is
selected but the contents of the output bus are available in the external output.

The ALU provides arithmetic and logic operations. In addition, the CPU
must provide shift operations. The shifter may be placed in the input of the
ALU to provide a preshift capability, or at the output of the ALU to provide
postshifting capability. In some cases, the shift operations are included with the
ALU. An arithmetic logic and shift unit was designed in Sec. 4-7. The function
table for this ALU is listed in Table 4-8. The encoding of the ALU operations
for the CPU is taken from Sec. 4-7 and is specified in Table 8-2. The OPR field
has five bits and each operation is designated with a symbolic name.

SECTION 8-2 General Register Organization 247

ALU

TABLE 8-1 Encoding of Register Selection Fields

Binary
Code SELA SELB SELD

000 Input Input None
001 R1 R1 R1
010 R2 R2 R2
011 R3 R3 R3
100 R4 R4 R4
101 R5 R5 R5
110 R6 R6 R6
111 R7 R7 R7

TABLE 8-2 Encoding of ALU Operations

OPR
Select Operation Symbol

00000 Transfer A TSFA
00001 Increment A INCA
00010 Add A � B ADD
00101 Subtract A � B SUB
00110 Decrement A DECA
01000 AND A and B AND
01010 OR A and B OR
01100 XOR A and B XOR
01110 Complement A COMA
10000 Shift right A SHRA
11000 Shift left A SHLA

Chapter08.qxd 2/2/2007 6:34 PM Page 247

EON
PreMedia

CONFIRMING PGS

Examples of Microoperations
A control word of 14 bits is needed to specify a microoperation in the CPU. The
control word for a given microoperation can be derived from the selection vari-
ables. For example, the subtract microoperation given by the statement

R1 ← R2 � R3

specifies R2 for the A input of the ALU, R3 for the B input of the ALU, R1
for the destination register, and an ALU operation to subtract A � B. Thus
the control word is specified by the four fields and the corresponding binary
value for each field is obtained from the encoding listed in Tables 8-1 and 8-2.
The binary control word for the subtract microoperation is 010 011 001 00101
and is obtained as follows:

Field: SELA SELB SELD OPR
Symbol: R2 R3 R1 SUB
Control word: 010 011 001 00101

The control word for this microoperation and a few others are listed in
Table 8-3.

The increment and transfer microoperations do not use the B input
of the ALU. For these cases, the B field is marked with a dash. We assign
000 to any unused field when formulating the binary control word,
although any other binary number may be used. To place the content of a
register into the output terminals we place the content of the register into
the A input of the ALU, but none of the registers are selected to accept the
data. The ALU operation TSFA places the data from the register, through
the ALU, into the output terminals. The direct transfer from input to output
is accomplished with a control word of all 0’s (making the B field 000).

248 CHAPTER EIGHT Central Processing Unit

TABLE 8-3 Examples of Microoperations for the CPU

Symbolic Designation

Microoperation SELA SELB SELD OPR Control Word

R1 ← R2 � R3 R2 R3 R1 SUB 010 011 001 00101
R4 ← R4 � R5 R4 R5 R4 OR 100 101 100 01010
R6 ← R6 � 1 R6 — R6 INCA 110 000 110 00001
R7 ← R1 R1 — R7 TSFA 001 000 111 00000
Output ← R2 R2 — None TSFA 010 000 00000000
Output ← Input Input — None TSFA 000 000 000 00000
R4 ← sh1 R4 R4 — R4 SHLA 100 000 100 11000
R5 ← 0 R5 R5 R5 XOR 101 101 101 01100

Chapter08.qxd 2/2/2007 6:34 PM Page 248

EON
PreMedia

CONFIRMING PGS

A register can be cleared to 0 with an exclusive-OR operation. This is
because x � x � 0.

It is apparent from these examples that many other microoperations can
be generated in the CPU. The most efficient way to generate control words
with a large number of bits is to store them in a memory unit. A memory unit
that stores control words is referred to as a control memory. By reading con-
secutive control words from memory, it is possible to initiate the desired
sequence of microoperations for the CPU. This type of control is referred to
as microprogrammed control. A microprogrammed control unit is shown in
Fig. 7-8. The binary control word for the CPU will come from the outputs of
the control memory marked “micro-ops.”

8-3 Stack Organization
A useful feature that is included in the CPU of most computers is a stack or
last-in, first-out (LIFO) list. A stack is a storage device that stores information
in such a manner that the item stored last is the first item retrieved. The oper-
ation of a stack can be compared to a stack of trays. The last tray placed on
top of the stack is the first to be taken off.

The stack in digital computers is essentially a memory unit with an
address register that can count only (after an initial value is loaded into it). The
register that holds the address for the stack is called a stack pointer (SP)
because its value always points at the top item in the stack. Contrary to a stack
of trays where the tray itself may be taken out or inserted, the physical regis-
ters of a stack are always available for reading or writing. It is the content of
the word that is inserted or deleted.

The two operations of a stack are the insertion and deletion of items. The
operation of insertion is called push (or push-down) because it can be thought
of as the result of pushing a new item on top. The operation of deletion is
called pop (or pop-up) because it can be thought of as the result of removing
one item so that the stack pops up. However, nothing is pushed or popped in
a computer stack’. These operations are simulated by incrementing or decre-
menting the stack pointer register.

Register Stack
A stack can be placed in a portion of a large memory or it can be organized as
a collection of a finite number of memory words or registers. Figure 8-3 shows
the organization of a 64-word register stack. The stack pointer register SP con-
tains a binary number whose value is equal to the address of the word that is
currently on top of the stack. Three items are placed in the stack: A, B, and C,
in that order. Item C is on top of the stack so that the content of SP is now 3.
To remove the top item, the stack is popped by reading the memory word at
address 3 and decrementing the content of SP. Item B is now on top of the stack

SECTION 8-3 Stack Organization 249

LIFO

stack pointer

Chapter08.qxd 2/2/2007 6:34 PM Page 249

EON
PreMedia

CONFIRMING PGS

since SP holds address 2. To insert a new item, the stack is pushed by incre-
menting SP and writing a word in the next-higher location in the stack. Note
that item C has been read out but not physically removed. This does not mat-
ter because when the stack is pushed, a new item is written in its place.

In a 64-word stack, the stack pointer contains 6 bits because 26 � 64. Since
SP has only six bits, it cannot exceed a number greater than 63 (111111 in
binary). When 63 is incremented by 1, the result is 0 since 111111 � 1 �
1000000 in binary, but SP can accommodate only the six least significant bits.
Similarly, when 000000 is decremented by 1, the result is 111111. The one-bit
register FULL is set to 1 when the stack is full, and the one-bit register EMTY is
set to 1 when the stack is empty of items. DR is the data register that holds the
binary data to be written into or read out of the stack.

Initially, SP is cleared to 0, EMTY is set to 1, and FULL is cleared to 0,
so that SP points to the word at address 0 and the stack is marked empty and
not full. If the stack is not full (if FULL � 0), a new item is inserted with a push
operation. The push operation is implemented with the following sequence of
microoperations:

SP ← SP � 1 Increment stack pointer

M [SP] ← DR Write item on top of the stack

250 CHAPTER EIGHT Central Processing Unit

push

4

63

Address

C

B

A

3

2

1

0

EMTYFULL

DR

SP

Figure 8-3 Block diagram of a 64-word stack.

Chapter08.qxd 2/2/2007 6:34 PM Page 250

EON
PreMedia

CONFIRMING PGS

If (SP � 0) then (FULL ← 1) Check if stack is full

EMTY ← 0 Mark the stack not empty

The stack pointer is incremented so that it points to the address of the
next-higher word. A memory write operation inserts the word from DR into
the top of the stack. Note that SP holds the address of the top of the stack and
that M [SP] denotes the memory word specified by the address presently avail-
able in SP. The first item stored in the stack is at address 1. The last item is
stored at address 0. If SP reaches 0, the stack is full of items, so FULL is set to 1.
This condition is reached if the top item prior to the last push was in location
63 and, after incrementing SP, the last item is stored in location 0. Once an
item is stored in location 0, there are no more empty registers in the stack. If
an item is written in the stack, obviously the stack cannot be empty, so EMTY
is cleared to 0.

A new item is deleted from the stack if the stack is not empty (if
EMTY � 0). The pop operation consists of the following sequence of micro-
operations:

DR ← M [SP] Read item from the top of stack

SP ← SP — 1 Decrement stack pointer

If (SP � 0) then (EMTY ← 1) Check if stack is empty

FULL ← 0 Mark the stack not full

The top item is read from the stack into DR. The stack pointer is then
decremented. If its value reaches zero, the stack is empty, so EMTY is set to l.
This condition is reached if the item read was in location 1. Once this item is
read out, SP is decremented and reaches the value 0, which is the initial value
of SP. Note that if a pop operation reads the item from location 0 and then SP
is decremented, SP changes to 111111, which is equivalent to decimal 63. In
this configuration, the word in address 0 receives the last item in the stack.
Note also that an erroneous operation will result if the stack is pushed when
FULL � 1 or popped when EMTY � 1.

Memory Stack
A stack can exist as a stand-alone unit as in Fig. 8-3 or can be implemented
in a random-access memory attached to a CPU. The implementation of a
stack in the CPU is done by assigning a portion of memory to a stack oper-
ation and using a processor register as a stack pointer. Figure 8-4 shows a
portion of computer memory partitioned into three segments: program,
data, and stack. The program counter PC points at the address of the next
instruction in the program. The address register AR points at an array of

SECTION 8-3 Stack Organization 251

pop

Chapter08.qxd 2/2/2007 6:34 PM Page 251

EON
PreMedia

CONFIRMING PGS

data. The stack pointer SP points at the top of the stack. The three registers
are connected to a common address bus, and either one can provide an
address for memory. PC is used during the fetch phase to read an instruc-
tion. AR is used during the execute phase to read an operand. SP is used to
push or pop items into or from the stack.

As shown in Fig. 8-4, the initial value of SP is 4001 and the stack grows
with decreasing addresses. Thus the first item stored in the stack is at address
4000, the second item is stored at address 3999, and the last address that can
be used for the stack is 3000. No provisions are available for stack limit checks.

252 CHAPTER EIGHT Central Processing Unit

2000

3000

3997

3998

3999

4000

4001

Program
(instructions)

Memory unit

Data
(operands)

Stack

1000

Address

DR

SP

AP

PC

Figure 8-4 Computer memory with program, data, and stack segments.

Chapter08.qxd 2/2/2007 6:34 PM Page 252

EON
PreMedia

CONFIRMING PGS

We assume that the items in the stack communicate with a data register
DR. A new item is inserted with the push operation as follows:

SP ← SP � 1

M [SP] ← DR

The stack pointer is decremented so that it points at the address of the next
word. A memory write operation inserts the word from DR into the top of the
stack. A new item is deleted with a pop operation as follows:

DR ← M [SP]

SP ← SP � 1

The top item is read from the stack into DR. The stack pointer is then incre-
mented to point at the next item in the stack.

Most computers do not provide hardware to check for stack overflow
(full stack) or underflow (empty stack). The stack limits can be checked by
using two processor registers: one to hold the upper limit (3000 in this case),
and the other to hold the lower limit (4001 in this case). After a push opera-
tion, SP is compared with the upper-limit register and after a pop operation,
SP is compared with the lower-limit register.

The two microoperations needed for either the push or pop are (1) an
access to memory through SP, and (2) updating SP. Which of the two micro-
operations is done first and whether SP is updated by incrementing or decre-
menting depends on the organization of the stack. In Fig. 8-4 the stack grows
by decreasing the memory address. The stack may be constructed to grow by
increasing the memory address as in Fig. 8-3. In such a case, SP is incre-
mented for the push operation and decremented for the pop operation. A
stack may be constructed so that SP points at the next empty location above
the top of the stack. In this case the sequence of microoperations must be
interchanged.

A stack pointer is loaded with an initial value. This initial value must be
the bottom address of an assigned stack in memory. Henceforth, SP is auto-
matically decremented or incremented with every push or pop operation. The
advantage of a memory stack is that the CPU can refer to it without having to
specify an address, since the address is always available and automatically
updated in the stack pointer.

Reverse Polish Notation
A stack organization is very effective for evaluating arithmetic expressions. The
common mathematical method of writing arithmetic expressions imposes dif-
ficulties when evaluated by a computer. The common arithmetic expressions

SECTION 8-3 Stack Organization 253

stack limits

Chapter08.qxd 2/2/2007 6:34 PM Page 253

EON
PreMedia

CONFIRMING PGS

are written in infix notation, with each operator written between the operands.
Consider the simple arithmetic expression.

A * B � C * D

The star (denoting multiplication) is placed between two operands A and B or
C and D. The plus is between the two products. To evaluate this arithmetic
expression it is necessary to compute the product A * B, store this product
while computing C * D, and then sum the two products. From this example we
see that to evaluate arithmetic expressions in infix notation it is necessary to
scan back and forth along the expression to determine the next operation to
be performed.

The Polish mathematician Lukasiewicz showed that arithmetic
expressions can be represented in prefix notation. This representation, often
referred to as Polish notation, places the operator before the operands.
The postfix notation, referred to as reverse Polish notation (RPN), places
the operator after the operands. The following examples demonstrate the
three representations:

A � B Infix notation

�AB Prefix or Polish notation

AB � Postfix or reverse Polish notation

The reverse Polish notation is in a form suitable for stack manipulation. The
expression

A * B � C * D

is written in reverse Polish notation as

AB * CD* �

and is evaluated as follows: Scan the expression from left to right. When an
operator is reached, perform the operation with the two operands found on
the left side of the operator. Remove the two operands and the operator and
replace them by the number obtained from the result of the operation.
Continue to scan the expression and repeat the procedure for every operator
encountered until there are no more operators.

For the expression above we find the operator * after A and B. We per-
form the operation A * B and replace A, B, and * by the product to obtain

(A * B)CD * �

254 CHAPTER EIGHT Central Processing Unit

RPN

Chapter08.qxd 2/2/2007 6:34 PM Page 254

EON
PreMedia

CONFIRMING PGS

where (A * B) is a single quantity obtained from the product. The next
operator is a * and its previous two operands are C and D, so we perform
C * D and obtain an expression with two operands and one operator:

(A * B)(C * D) �

The next operator is � and the two operands to be added are the two prod-
ucts, so we add the two quantities to obtain the result.

The conversion from infix notation to reverse Polish notation must take
into consideration the operational hierarchy adopted for infix notation. This
hierarchy dictates that we first perform all arithmetic inside inner parentheses,
then inside outer parentheses, and do multiplication and division operations
before addition and subtraction operations. Consider the expression

(A � B) * [C * (D � E) � F]

To evaluate the expression we must first perform the arithmetic inside the
parentheses (A � B) and (D � E). Next we must calculate the expression inside
the square brackets. The multiplication of C * (D � E) must be done prior to
the addition of F since multiplication has precedence over addition. The last
operation is the multiplication of the two terms between the parentheses and
brackets. The expression can be converted to reverse Polish notation, without
the use of parentheses, by taking into consideration the operation hierarchy.
The converted expression is

AB � DE � C * F � *

Proceeding from left to right, we first add A and B, then add D and E. At this
point we are left with

(A � B) (D �E)C * F � *

where (A � B) and (D � E) are each a single number obtained from the sum.
The two operands for the next * are C and (D � E). These two numbers are
multiplied and the product added to F. The final * causes the multiplication of
the two terms.

Evaluation of Arithmetic Expressions
Reverse Polish notation, combined with a stack arrangement of registers, is the
most efficient way known for evaluating arithmetic expressions. This proce-
dure is employed in some electronic calculators and also in some computers.
The stack is particularly useful for handling long, complex problems involv-
ing chain calculations. It is based on the fact that any arithmetic expression
can be expressed in parentheses-free Polish notation.

SECTION 8-3 Stack Organization 255

conversion to RPN

Chapter08.qxd 2/2/2007 6:34 PM Page 255

EON
PreMedia

CONFIRMING PGS

The procedure consists of first converting the arithmetic expression into
its equivalent reverse Polish notation. The operands are pushed into the stack
in the order in which they appear. The initiation of an operation depends on
whether we have a calculator or a computer. In a calculator, the operators are
entered through the keyboard. In a computer, they must be initiated by
instructions that contain an operation field (no address field is required). The
following microoperations are executed with the stack when an operation is
entered in a calculator or issued by the control in a computer: (1) the two top-
most operands in the stack are used for the operation, and (2) the stack is
popped and the result of the operation replaces the lower operand. By push-
ing the operands into the stack continuously and performing the operations as
defined above, the expression is evaluated in the proper order and the final
result remains on top of the stack.

The following numerical example may clarify this procedure. Consider
the arithmetic expression

(3 * 4) � (5 * 6)

In reverse Polish notation, it is expressed as

34 * 56 * �

Now consider the stack operations shown in Fig. 8-5. Each box represents one
stack operation and the arrow always points to the top of the stack. Scanning
the expression from left to right, we encounter two operands. First the num-
ber 3 is pushed into the stack, then the number 4. The next symbol is the mul-
tiplication operator * . This causes a multiplication of the two topmost items
in the stack. The stack is then popped and the product is placed on top of the
stack, replacing the two original operands. Next we encounter the two
operands 5 and 6, so they are pushed into the stack. The stack operation that
results from the next * replaces these two numbers by their product. The last
operation causes an arithmetic addition of the two topmost numbers in the
stack to produce the final result of 42.

Scientific calculators that employ an internal stack require that the user
convert the arithmetic expressions into reverse Polish notation. Computers
that use a stack-organized CPU provide a system program to perform the

256 CHAPTER EIGHT Central Processing Unit

stack operations

3 12
5
12 12 123

4

3 4 *

42

+5

30

*

5

6

6

Figure 8-5 Stack operations to evaluate 3 • 4 � 5 • 6.

Chapter08.qxd 2/2/2007 6:34 PM Page 256

EON
PreMedia

CONFIRMING PGS

conversion for the user. Most compilers, irrespective of their CPU organiza-
tion, convert all arithmetic expressions into Polish notation anyway because
this is the most efficient method for translating arithmetic expressions into
machine language instructions. So in essence, a stack-organized CPU may be
more efficient in some applications than a CPU without a stack.

8-4 Instruction Formats
The physical and logical structure of computers is normally described in ref-
erence manuals provided with the system. Such manuals explain the internal
construction of the CPU, including the processor registers available and their
logical capabilities. They list all hardware-implemented instructions, specify
their binary code format, and provide a precise definition of each instruction.
A computer will usually have a variety of instruction code formats. It is the
function of the control unit within the CPU to interpret each instruction code
and provide the necessary control functions needed to process the instruction.

The format of an instruction is usually depicted in a rectangular box sym-
bolizing the bits of the instruction as they appear in memory words or in a
control register. The bits of the instruction are divided into groups called
fields. The most common fields found in instruction formats are:

1. An operation code field that specifies the operation to be performed.
2. An address field that designates a memory address or a processor

register.
3. A mode field that specifies the way the operand or the effective address

is determined.

Other special fields are sometimes employed under certain circumstances, as
for example a field that gives the number of shifts in a shift-type instruction.

The operation code field of an instruction is a group of bits that define
various processor operations, such as add, subtract, complement, and shift.
The most common operations available in computer instructions are enumer-
ated and discussed in Sec. 8-6. The bits that define the mode field of an
instruction code specify a variety of alternatives for choosing the operands
from the given address. The various addressing modes that have been formu-
lated for digital computers are presented in Sec. 8-5. In this section we are con-
cerned with the address field of an instruction format and consider the effect
of including multiple address fields in an instruction.

Operations specified by computer instructions are executed on some data
stored in memory or processor registers. Operands residing in memory are
specified by their memory address. Operands residing in processor registers are
specified with a register address. A register address is a binary number of k bits
that defines one of 2k registers in the CPU. Thus a CPU with 16 processor

SECTION 8-4 Instruction Formats 257

register address

Chapter08.qxd 2/2/2007 6:34 PM Page 257

EON
PreMedia

CONFIRMING PGS

registers R 0 through R15 will have a register address field of four bits. The
binary number 0101, for example, will designate register R5.

Computers may have instructions of several different lengths containing
varying number of addresses. The number of address fields in the instruction
format of a computer depends on the internal organization of its registers.
Most computers fall into one of three types of CPU organizations:

1. Single accumulator organization.
2. General register organization.
3. Stack organization.

An example of an accumulator-type organization is the basic computer
presented in Chap. 5. All operations are performed with an implied accumu-
lator register. The instruction format in this type of computer uses one address
field. For example, the instruction that specifies an arithmetic addition is
defined by an assembly language instruction as

ADD X

where X is the address of the operand. The ADD instruction in this case
results in the operation AC ← AC � M [X]. AC is the accumulator register and
M [X] symbolizes the memory word located at address X.

An example of a general register type of organization was presented in
Fig. 7-1. The instruction format in this type of computer needs three register
address fields. Thus the instruction for an arithmetic addition may be written
in an assembly language as

ADD R1, R2, R3

to denote the operation R1 ← R2 � R3. The number of address fields in the
instruction can be reduced from three to two if the destination register is the
same as one of the source registers. Thus the instruction

ADD R1, R2

would denote the operation R1 ← R1 � R2. Only register addresses for R1
and R2 need be specified in this instruction.

Computers with multiple processor registers use the move instruction with
a mnemonic MOV to symbolize a transfer instruction. Thus the instruction

MOV R1, R2

denotes the transfer R1 ← R2 (or R2 ← R1, depending on the particular com-
puter). Thus transfer-type instructions need two address fields to specify the
source and the destination.

258 CHAPTER EIGHT Central Processing Unit

Chapter08.qxd 2/2/2007 6:34 PM Page 258

EON
PreMedia

CONFIRMING PGS

General register-type computers employ two or three address fields in
their instruction format. Each address field may specify a processor register or
a memory word. An instruction symbolized by

ADD R1, X

would specify the operation R1 ← R1 � M [X]. It has two address fields, one
for register R1 and the other for the memory address X.

The stack-organized CPU was presented in Fig. 8-4. Computers with
stack organization would have PUSH and POP instructions which require an
address field. Thus the instruction

PUSH X

will push the word at address X to the top of the stack. The stack pointer is
updated automatically. Operation-type instructions do not need an address
field in stack-organized computers. This is because the operation is performed
on the two items that are on top of the stack. The instruction

ADD

in a stack computer consists of an operation code only with no address field. This
operation has the effect of popping the two top numbers from the stack, adding
the numbers, and pushing the sum into the stack. There is no need to specify
operands with an address field since all operands are implied to be in the stack.

Most computers fall into one of the three types of organizations that have
just been described. Some computers combine features from more than one
organizational structure. For example, the Intel 8080 microprocessor has
seven CPU registers, one of which is an accumulator register. As a conse-
quence, the processor has some of the characteristics of a general register type
and some of the characteristics of an accumulator type. All arithmetic and
logic instructions, as well as the load and store instructions, use the accumula-
tor register, so these instructions have only one address field. On the other
hand, instructions that transfer data among the seven processor registers have
a format that contains two register address fields. Moreover, the Intel 8080
processor has a stack pointer and instructions to push and pop from a mem-
ory stack. The processor, however, does not have the zero-address-type
instructions which are characteristic of a stack-organized CPU.

To illustrate the influence of the number of addresses on computer pro-
grams, we will evaluate the arithmetic statement

X � (A � B) * (C � D)

using zero, one, two, or three address instructions. We will use the symbols
ADD, SUB, MUL, and DIV for the four arithmetic operations; MOV for the

SECTION 8-4 Instruction Formats 259

Chapter08.qxd 2/2/2007 6:34 PM Page 259

EON
PreMedia

CONFIRMING PGS

transfer-type operation; and LOAD and STORE for transfers to and from mem-
ory and AC register. We will assume that the operands are in memory addresses
A, B, C, and D, and the result must be stored in memory at address X.

Three-Address Instructions
Computers with three-address instruction formats can use each address
field to specify either a processor register or a memory operand. The pro-
gram in assembly language that evaluates X � (A � B) * (C � D) is shown
below, together with comments that explain the register transfer operation
of each instruction.

ADD R1, A, B R1 ← M[A]� M[B]
ADD R2, C, D R2 ← M[C]� M[D]
MUL X, R1, R2 M[X] ← R1* R2

It is assumed that the computer has two processor registers, R1 and R2. The
symbol M [A] denotes the operand at memory address symbolized by A.

The advantage of the three-address format is that it results in short pro-
grams when evaluating arithmetic expressions. The disadvantage is that the
binary-coded instructions require too many bits to specify three addresses. An
example of a commercial computer that uses three-address instructions is the
Cyber 170. The instruction formats in the Cyber computer are restricted to
either three register address fields or two register address fields and one mem-
ory address field.

Two-Address Instructions
Two-address instructions are the most common in commercial computers.
Here again each address field can specify either a processor register or a mem-
ory word. The program to evaluate X � (A � B) * (C � D) is as follows:

MOV R1, A R1 ← M[A]
ADD R1, B R1 ← R1 � M[B]
MOV R2, C R2 ← M[C]
ADD R2, D R2 ← R2 � M[D]
MUL R1, R2 R1 ← R1*R2
MOV X, R1 M[X] ← R1

The MOV instruction moves or transfers the operands to and from mem-
ory and processor registers. The first symbol listed in an instruction is
assumed to be both a source and the destination where the result of the
operation is transferred.

260 CHAPTER EIGHT Central Processing Unit

Chapter08.qxd 2/2/2007 6:34 PM Page 260

EON
PreMedia

CONFIRMING PGS

One-Address Instructions
One-address instructions use an implied accumulator (AC) register for all
data manipulation. For multiplication and division there is a need for a sec-
ond register. However, here we will neglect the second register and assume
that the AC contains the result of all operations. The program to evaluate
X � (A � B) * (C � D) is

LOAD A AC ← M[A]
ADD B AC ← AC � M[B]
STORE T M[T] ← ΑC
LOAD C AC ← M[C]
ADD D AC ← AC � M[D]
MUL T AC ← AC * M[T]
STORE X M[X] ← AC

All operations are done between the AC register and a memory operand.
T is the address of a temporary memory location required for storing the inter-
mediate result.

Zero-Address Instructions
A stack-organized computer does not use an address field for the instructions
ADD and MUL. The PUSH and POP instructions, however, need an address
field to specify the operand that communicates with the stack. The following
program shows how X � (A � B) * (C � D) will be written for a stack-organized
computer. (TOS stands for top of stack).

PUSH A TOS ← A
PUSH B TOS ← B
ADD TOS ← (A � B)
PUSH C TOS ← C
PUSH D TOS ← D
ADD TOS ← (C � D)
MUL TOS ← (C � D)*(A � B)
POP X M[X] ← TOS

To evaluate arithmetic expressions in a stack computer, it is necessary to
convert the expression into reverse Polish notation. The name “zero-address”
is given to this type of computer because of the absence of an address field in
the computational instructions.

RISC Instructions
The advantages of a reduced instruction set computer (RISC) architecture are
explained in Sec. 8-8. The instruction set of a typical RISC processor is restricted

SECTION 8-4 Instruction Formats 261

Chapter08.qxd 2/2/2007 6:34 PM Page 261

EON
PreMedia

CONFIRMING PGS

to the use of load and store instructions when communicating between mem-
ory and CPU. All other instructions are executed within the registers of the
CPU without referring to memory. A program for a RISC-type CPU consists
of LOAD and STORE instructions that have one memory and one register
address, and computational-type instructions that have three addresses with all
three specifying processor registers. The following is a program to evaluate
X � (A � B) * (C � D).

LOAD R1, A R1 ← M[A]
LOAD R2, B R2 ← M[B]
LOAD R3, C R3 ← M[C]
LOAD R4, D R4 ← M[D]
ADD R1, R1, R2 R1 ← R1 � R2
ADD R3, R3, R2 R3 ← R3 � R4
MUL R1, R1, R3 R1 ← R1 * R3
STORE X, R1 M[X] ← R1

The load instructions transfer the operands from memory to CPU registers.
The add and multiply operations are executed with data in the registers with-
out accessing memory. The result of the computations is then stored in mem-
ory with a store instruction.

8-5 Addressing Modes
The operation field of an instruction specifies the operation to be performed.
This operation must be executed on some data stored in computer registers or
memory words. The way the operands are chosen during program execution
is dependent on the addressing mode of the instruction. The addressing mode
specifies a rule for interpreting or modifying the address field of the instruc-
tion before the operand is actually referenced. Computers use addressing
mode techniques for the purpose of accommodating one or both of the fol-
lowing provisions:

1. To give programming versatility to the user by providing such facilities
as pointers to memory, counters for loop control, indexing of data, and
program relocation.

2. To reduce the number of bits in the addressing field of the instruction.

The availability of the addressing modes gives the experienced assembly
language programmer flexibility for writing programs that are more efficient
with respect to the number of instructions and execution time.

To understand the various addressing modes to be presented in this sec-
tion, it is imperative that we understand the basic operation cycle of the

262 CHAPTER EIGHT Central Processing Unit

Chapter08.qxd 2/2/2007 6:34 PM Page 262

EON
PreMedia

CONFIRMING PGS

computer. The control unit of a computer is designed to go through an instruc-
tion cycle that is divided into three major phases:

1. Fetch the instruction from memory.
2. Decode the instruction.
3. Execute the instruction.

There is one register in the computer called the program counter or PC that
keeps track of the instructions in the program stored in memory. PC holds
the address of the instruction to be executed next and is incremented
each time an instruction is fetched from memory. The decoding done in
step 2 determines the operation to be performed, the addressing mode of
the instruction, and the location of the operands. The computer then
executes the instruction and returns to step 1 to fetch the next instruction
in sequence.

In some computers the addressing mode of the instruction is specified
with a distinct binary code, just like the operation code is specified. Other
computers use a single binary code that designates both the operation and the
mode of the instruction. Instructions may be defined with a variety of address-
ing modes, and sometimes, two or more addressing modes are combined in
one instruction.

An example of an instruction format with a distinct addressing mode
field is shown in Fig. 8-6. The operation code specifies the operation to be per-
formed. The mode field is used to locate the operands needed for the opera-
tion. There may or may not be an address field in the instruction. If there is
an address field, it may designate a memory address or a processor register.
Moreover, as discussed in the preceding section, the instruction may have
more than one address field, and each address field may be associated with its
own particular addressing mode.

Although most addressing modes modify the address field of the instruc-
tion, there are two modes that need no address field at all. These are the
implied and immediate modes.

Implied Mode: In this mode the operands are specified implicitly in the defi-
nition of the instruction. For example, the instruction “complement accumulator”
is an implied-mode instruction because the operand in the accumulator register
is implied in the definition of the instruction. In fact, all register reference
instructions that use an accumulator are implied-mode instructions. Zero-address

SECTION 8-5 Addressing Modes 263

Opcode Mode Address

Figure 8-6 Instruction format with mode field.

program counter
(PC)

mode field

Chapter08.qxd 2/2/2007 6:34 PM Page 263

EON
PreMedia

CONFIRMING PGS

instructions in a stack-organized computer are implied-mode instructions
since the operands are implied to be on top of the stack.

Immediate Mode: In this mode the operand is specified in the instruction itself.
In other words, an immediate-mode instruction has an operand field rather than
an address field. The operand field contains the actual operand to be used in con-
junction with the operation specified in the instruction. Immediate-mode instruc-
tions are useful for initializing registers to a constant value.

It was mentioned previously that the address field of an instruction may
specify either a memory word or a processor register. When the address field
specifies a processor register, the instruction is said to be in the register mode.

Register Mode: In this mode the operands are in registers that reside within the
CPU. The particular register is selected from a register field in the instruction. A
k-bit field can specify any one of 2k registers.

Register Indirect Mode: In this mode the instruction specifies a register in
the CPU whose contents give the address of the operand in memory. In other
words, the selected register contains the address of the operand rather than the
operand itself. Before using a register indirect mode instruction, the program-
mer must ensure that the memory address of the operand is placed in the
processor register with a previous instruction. A reference to the register is then
equivalent to specifying a memory address. The advantage of a register indirect
mode instruction is that the address field of the instruction uses fewer bits to
select a register than would have been required to specify a memory address
directly.

Autoincrement or Autodecrement Mode: This is similar to the register indi-
rect mode except that the register is incremented or decremented after (or before)
its value is used to access memory. When the address stored in the register refers
to a table of data in memory, it is necessary to increment or decrement the regis-
ter after every access to the table. This can be achieved by using the increment or
decrement instruction. However, because it is such a common requirement, some
computers incorporate a special mode that automatically increments or decre-
ments the content of the register after data access.

The address field of an instruction is used by the control unit in the CPU
to obtain the operand from memory. Sometimes the value given in the address
field is the address of the operand, but sometimes it is just an address from which
the address of the operand is calculated. To differentiate among the various
addressing modes it is necessary to distinguish between the address part of the
instruction and the effective address used by the control when executing the
instruction. The effective address is defined to be the memory address obtained
from the computation dictated by the given addressing mode. The effective
address is the address of the operand in a computational-type instruction. It is

264 CHAPTER EIGHT Central Processing Unit

effective address

Chapter08.qxd 2/2/2007 6:34 PM Page 264

EON
PreMedia

CONFIRMING PGS

the address where control branches in response to a branch-type instruction. We
have already defined two addressing modes in Chap. 5. They are summarized
here for reference.

Direct Address Mode: In this mode the effective address is equal to the address
part of the instruction. The operand resides in memory and its address is given
directly by the address field of the instruction. In a branch-type instruction the
address field specifies the actual branch address.

Indirect Address Mode: In this mode the address field of the instruction gives
the address where the effective address is stored in memory. Control fetches the
instruction from memory and uses its address part to access memory again to read
the effective address. The indirect address mode is also explained in Sec. 5-1 in
conjunction with Fig. 5-2.

A few addressing modes require that the address field of the instruction
be added to the content of a specific register in the CPU. The effective address
in these modes is obtained from the following computation:

effective address � address part of instruction � content of CPU register

The CPU register used in the computation may be the program counter, an
index register, or a base register. In either case we have a different addressing
mode which is used for a different application.

Relative Address Mode: In this mode the content of the program counter is
added to the address part of the instruction in order to obtain the effective
address. The address part of the instruction is usually a signed number (in 2’s
complement representation) which can be either positive or negative. When this
number is added to the content of the program counter, the result produces an
effective address whose position in memory is relative to the address of the next
instruction. To clarify with an example, assume that the program counter contains
the number 825 and the address part of the instruction contains the number 24.
The instruction at location 825 is read from memory during the fetch phase and
the program counter is then incremented by one to 826. The effective address
computation for the relative address mode is 826 � 24 � 850. This is 24 memory
locations forward from the address of the next instruction. Relative addressing
is often used with branch-type instructions when the branch address is in the area
surrounding the instruction word itself. It results in a shorter address field in
the instruction format since the relative address can be specified with a smaller
number of bits compared to the number of bits required to designate the entire
memory address.

Indexed Addressing Mode: In this mode the content of an index register
is added to the address part of the instruction to obtain the effective address.

SECTION 8-5 Addressing Modes 265

Chapter08.qxd 2/2/2007 6:34 PM Page 265

EON
PreMedia

CONFIRMING PGS

The index register is a special CPU register that contains an index value. The
address field of the instruction defines the beginning address of a data array in
memory. Each operand in the array is stored in memory relative to the begin-
ning address. The distance between the beginning address and the address of
the operand is the index value stored in the index register. Any operand in the
array can be accessed with the same instruction provided that the index reg-
ister contains the correct index value. The index register can be incremented
to facilitate access to consecutive operands. Note that if an index-type instruc-
tion does not include an address field in its format, the instruction converts to
the register indirect mode of operation.

Some computers dedicate one CPU register to function solely as an
index register. This register is involved implicitly when, the index-mode
instruction is used. In computers with many processor registers, any one of the
CPU registers can contain the index number. In such a case the register must
be specified explicitly in a register field within the instruction format.

Base Register Addressing Mode: In this mode the content of a base register
is added to the address part of the instruction to obtain the effective address. This
is similar to the indexed addressing mode except that the register is now called a
base register instead of an index register. The difference between the two modes
is in the way they are used rather than in the way that they are computed. An
index register is assumed to hold an index number that is relative to the address
part of the instruction. A base register is assumed to hold a base address and the
address field of the instruction gives a displacement relative to this base address.
The base register addressing mode is used in computers to facilitate the reloca-
tion of programs in memory. When programs and data are moved from one seg-
ment of memory to another, as required in multiprogramming systems, the
address values of instructions must reflect this change of position. With a base
register, the displacement values of instructions do not have to change. Only the
value of the base register requires updating to reflect the beginning of a new
memory segment.

Numerical Example
To show the differences between the various modes, we will show the effect of
the addressing modes on the instruction defined in Fig. 8-7. The two-word
instruction at address 200 and 201 is a “load to AC” instruction with an
address field equal to 500. The first word of the instruction specifies the oper-
ation code and mode, and the second word specifies the address part. PC has
the value 200 for fetching this instruction. The content of processor register R1
is 400, and the content of an index register XR is 100. AC receives the operand
after the instruction is executed. The figure lists a few pertinent addresses and
shows the memory content at each of these addresses.

266 CHAPTER EIGHT Central Processing Unit

Chapter08.qxd 2/2/2007 6:34 PM Page 266

EON
PreMedia

CONFIRMING PGS

The mode field of the instruction can specify any one of a number of
modes. For each possible mode we calculate the effective address and the
operand that must be loaded into AC. In the direct address mode the effective
address is the address part of the instruction 500 and the operand to be loaded
into AC is 800. In the immediate mode the second word of the instruction is
taken as the operand rather than an address, so 500 is loaded into AC. (The
effective address in this case is 201.) In the indirect mode the effective address
is stored in memory at address 500. Therefore, the effective address is 800 and
the operand is 300. In the relative mode the effective address is 500 � 202 �
702 and the operand is 325. (Note that the value in PC after the fetch phase
and during the execute phase is 202.) In the index mode the effective address
is XR � 500 � 100 � 500 � 600 and the operand is 900. In the register mode
the operand is in R1 and 400 is loaded into AC. (There is no effective address
in this case.) In the register indirect mode the effective address is 400, equal to
the content of R1 and the operand loaded into AC is 700. The autoincrement
mode is the same as the register indirect mode except that R1 is incremented
to 401 after the execution of the instruction. The autodecrement mode decre-
ments R1 to 399 prior to the execution of the instruction. The operand loaded
into AC is now 450. Table 8-4 lists the values of the effective address and the
operand loaded into AC for the nine addressing modes.

SECTION 8-5 Addressing Modes 267

PC � 200

Address

200

201

202

399

400

500

600

702

800 300

325

900

800

700

450

Next instruction

Load to AC Mode

Address � 500

Memory

R1 � 400

XR � 100

AC

Figure 8-7 Numerical example for addressing modes.

Chapter08.qxd 2/2/2007 6:34 PM Page 267

EON
PreMedia

CONFIRMING PGS

8-6 Data Transfer and Manipulation
Computers provide an extensive set of instructions to give the user the flex-
ibility to carry out various computational tasks. The instruction set of differ-
ent computers differ from each other mostly in the way the operands are
determined from the address and mode fields. The actual operations avail-
able in the instruction set are not very different from one computer to
another. It so happens that the binary code assignments in the operation
code field is different in different computers, even for the same operation. It
may also happen that the symbolic name given to instructions in the assem-
bly language notation is different in different computers, even for the same
instruction. Nevertheless, there is a set of basic operations that most, if not
all, computers include in their instruction repertoire. The basic set of opera-
tions available in a typical computer is the subject covered in this and the
next section.

Most computer instructions can be classified into three categories:

1. Data transfer instructions
2. Data manipulation instructions
3. Program control instructions

Data transfer instructions cause transfer of data from one location to another
without changing the binary information content. Data manipulation instruc-
tions are those that perform arithmetic, logic, and shift operations. Program
control instructions provide decision-making capabilities and change the path
taken by the program when executed in the computer. The instruction set of
a particular computer determines the register transfer operations and control
decisions that are available to the user.

268 CHAPTER EIGHT Central Processing Unit

TABLE 8-4 Tabular List of Numerical Example

Addressing Effective Content
Mode Address of AC

Direct address 500 800
Immediate operand 201 500
Indirect address 800 300
Relative address 702 325
Indexed address 600 900
Register — 400
Register indirect 400 700
Autoincrement 400 700
Autodecrement 399 450

set of basic
operations

Chapter08.qxd 2/2/2007 6:34 PM Page 268

EON
PreMedia

CONFIRMING PGS

Data Transfer Instructions
Data transfer instructions move data from one place in the computer to another
without changing the data content. The most common transfers are between
memory and processor registers, between processor registers and input or out-
put, and between the processor registers themselves. Table 8-5 gives a list of
eight data transfer instructions used in many computers. Accompanying each
instruction is a mnemonic symbol. It must be realized that different computers
use different mnemonics for the same instruction name.

The load instruction has been used mostly to designate a transfer from
memory to a processor register, usually an accumulator. The store instruction
designates a transfer from a processor register into memory. The move instruc-
tion has been used in computers with multiple CPU registers to designate a
transfer from one register to another. It has also been used for data transfers
between CPU registers and memory or between two memory words. The
exchange instruction swaps information between two registers or a register and
a memory word. The input and output instructions transfer data among proces-
sor registers and input or output terminals. The push and pop instructions trans-
fer data between processor registers and a memory stack.

It must be realized that the instructions listed in Table 8-5, as well as in
subsequent tables in this section, are often associated with a variety of
addressing modes. Some assembly language conventions modify the
mnemonic symbol to differentiate between the different addressing modes.
For example, the mnemonic for load immediate becomes LDI. Other assem-
bly language conventions use a special character to designate the addressing
mode. For example, the immediate mode is recognized from a pound sign #
placed before the operand. In any case, the important thing is to realize
that each instruction can occur with a variety of addressing modes. As an
example, consider the load to accumulator instruction when used with eight

SECTION 8-6 Data Transfer and Manipulation 269

TABLE 8-5 Typical Data Transfer
Instructions

Name Mnemonic

Load LD
Store ST
Move MOV
Exchange XCH
Input IN
Output OUT
Push PUSH
Pop POP

Chapter08.qxd 2/2/2007 6:35 PM Page 269

EON
PreMedia

CONFIRMING PGS

different addressing modes. Table 8-6 shows the recommended assembly lan-
guage convention and the actual transfer accomplished in each case. ADR
stands for an address, NBR is a number or operand, X is an index register, R1
is a processor register, and AC is the accumulator register. The @ character sym-
bolizes an indirect address. The $ character before an address makes the
address relative to the program counter PC. The # character precedes the
operand in an immediate-mode instruction. An indexed mode instruction is rec-
ognized by a register that is placed in parentheses after the symbolic address.
The register mode is symbolized by giving the name of a processor register. In
the register indirect mode, the name of the register that holds the memory
address is enclosed in parentheses. The autoincrement mode is distinguished
from the register indirect mode by placing a plus after the parenthesized regis-
ter. The autodecrement mode would use a minus instead. To be able to write
assembly language programs for a computer, it is necessary to know the type of
instructions available and also to be familiar with the addressing modes used in
the particular computer.

Data Manipulation Instructions
Data manipulation instructions perform operations on data and provide the
computational capabilities for the computer. The data manipulation instruc-
tions in a typical computer are usually divided into three basic types:

1. Arithmetic instructions
2. Logical and bit manipulation instructions
3. Shift instructions

A list of data manipulation instructions will look very much like the list of micro-
operations given in Chap. 4. It must be realized, however, that each instruction
when executed in the computer must go through the fetch phase to read its binary

270 CHAPTER EIGHT Central Processing Unit

TABLE 8-6 Eight Addressing Modes for the Load Instruction

Assembly
Mode Convention Register Transfer

Direct address LD ADR AC ← M [ADR]
Indirect address LD @ADR AC ← M [M [ADR]]
Relative address LD $ADR AC ← M [PC � ADR]
Immediate operand LD #NBR AC ← NBR
Index addressing LD ADR(X) AC ← M [ADR � XR]
Register LD R1 AC ← R1
Register indirect LD (R1) AC ← M [R1]
Autoincrement LD (R1) � AC ← M [R1], R1 ← R1 � 1

Chapter08.qxd 2/2/2007 6:35 PM Page 270

EON
PreMedia

CONFIRMING PGS

code value from memory. The operands must also be brought into processor
registers according to the rules of the instruction addressing mode. The last
step is to execute the instruction in the processor. This last step is implemented
by means of microoperations as explained in Chap. 4, or through an ALU and
shifter as shown in Fig. 8-2. Some of the arithmetic instructions need special
circuits for their implementation.

Arithmetic Instructions
The four basic arithmetic operations are addition, subtraction, multiplication,
and division. Most computers provide instructions for all four operations.
Some small computers have only addition and possibly subtraction instruc-
tions. The multiplication and division must then be generated by means of
software subroutines. The four basic arithmetic operations are sufficient for
formulating solutions to scientific problems when expressed in terms of numer-
ical analysis methods.

A list of typical arithmetic instructions is given in Table 8-7. The incre-
ment instruction adds 1 to the value stored in a register or memory word. One
common characteristic of the increment operations when executed in proces-
sor registers is that a binary number of all 1’s when incremented produces a
result of all 0’s. The decrement instruction subtracts 1 from a value stored in
a register or memory word. A number with all 0’s, when decremented, pro-
duces a number with all 1’s.

The add, subtract, multiply, and divide instructions may be available for
different types of data. The data type assumed to be in processor registers dur-
ing the execution of these arithmetic operations is included in the definition of
the operation code. An arithmetic instruction may specify fixed-point or floating-
point data, binary or decimal data, single-precision or double-precision data.
The various data types are presented in Chap. 3.

SECTION 8-6 Data Transfer and Manipulation 271

TABLE 8-7 Typical Arithmetic Instructions

Name Mnemonic

Increment INC
Decrement DEC
Add ADD
Subtract SUB
Multiply MUL
Divide DIV
Add with carry ADDC
Subtract with borrow SUBB
Negate (2’s complement) NEG

data type

Chapter08.qxd 2/2/2007 6:35 PM Page 271

EON
PreMedia

CONFIRMING PGS

It is not uncommon to find computers with three or more add instructions:
one for binary integers, one for floating-point operands, and one for decimal
operands. The mnemonics for three add instructions that specify different data
types are shown below.

ADDI Add two binary integer numbers
ADDF Add two floating-point numbers
ADDD Add two decimal numbers in BCD

Algorithms for integer, floating-point, and decimal arithmetic operations are
developed in Chap. 10.

The number of bits in any register is of finite length and therefore the
results of arithmetic operations are of finite precision. Some computers pro-
vide hardware double-precision operations where the length of each operand
is taken to be the length of two memory words. Most small computers provide
special instructions to facilitate double-precision arithmetic. A special carry
flip-flop is used to store the carry from an operation. The instruction “add with
carry” performs the addition on two operands plus the value of the carry
from the previous computation. Similarly, the “subtract with borrow” instruc-
tion subtracts two words and a borrow which may have resulted from a pre-
vious subtract operation. The negate instruction forms the 2’s complement of
a number, effectively reversing the sign of an integer when represented in the
signed-2’s complement form.

Logical and Bit Manipulation Instructions
Logical instructions perform binary operations on strings of bits stored in reg-
isters. They are useful for manipulating individual bits or a group of bits that
represent binary-coded information. The logical instructions consider each bit
of the operand separately and treat it as a Boolean variable, By proper appli-
cation of the logical instructions it is possible to change bit value, to clear a
group of bits, or to insert new bit values into operands stored in registers or
memory words.

Some typical logical and bit manipulation instructions are listed in
Table 8-8. The clear instruction causes the specified operand to be replaced by
0’s. The complement instruction produces the l’s complement by inverting all
the bits of the operand. The AND, OR, and XOR instructions produce the
corresponding logical operations on individual bits of the operands. Although
they perform Boolean operations, when used in computer instructions, the
logical instructions should be considered as performing bit manipulation oper-
ations. There are three bit manipulation operations possible: a selected bit can
be cleared to 0, or can be set to 1, or can be complemented. The three logical
instructions are usually applied to do just that.

The AND instruction is used to clear a bit or a selected group of bits of
an operand. For any Boolean variable x, the relationships x b0 � 0 and x b1 � x
dictate that a binary variable ANDed with a 0 produces a 0; but the variable

272 CHAPTER EIGHT Central Processing Unit

clear selected bits

Chapter08.qxd 2/2/2007 6:35 PM Page 272

EON
PreMedia

CONFIRMING PGS

does not change in value when ANDed with a 1. Therefore, the AND instruc-
tion can be used to clear bits of an operand selectively by ANDing the
operand with another operand that has 0’s in the bit positions that must be
cleared. The AND instruction is also called a mask because it masks or inserts
0’s in a selected portion of an operand.

The OR instruction is used to set a bit or a selected group of bits of an
operand. For any Boolean variable x, the relationships x � 1 � l and x � 0 � x
dictate that a binary variable ORed with a 1 produces a 1; but the variable
does not change when ORed with a 0. Therefore, the OR instruction can be
used to selectively set bits of an operand by ORing it with another operand
with 1’s in the bit positions that must be set to 1.

Similarly, the XOR instruction is used to selectively complement bits of an
operand. This is because of the Boolean relationships x � 1 � x� and x � 0 � x.
Thus a binary variable is complemented when XORed with a 1 but does not
change in value when XORed with a 0. Numerical examples showing the three
logic operations are given in Sec. 4-5.

A few other bit manipulation instructions are included in Table 8-8.
Individual bits such as a carry can be cleared, set, or complemented with
appropriate instructions. Another example is a flip-flop that controls the inter-
rupt facility and is either enabled or disabled by means of bit manipulation
instructions.

Shift Instructions
Instructions to shift the content of an operand are quite useful and are often
provided in several variations. Shifts are operations in which the bits of a
word are moved to the left or right. The bit shifted in at the end of the word
determines the type of shift used. Shift instructions may specify either logical

SECTION 8-6 Data Transfer and Manipulation 273

TABLE 8-8 Typical Logical and Bit
Manipulation Instructions

Name Mnemonic

Clear CLR
Complement COM
AND AND
OR OR
Exclusive-OR XOR
Clear carry CLRC
Set carry SETC
Complement carry COMC
Enable interrupt EI
Disable interrupt DI

set selected bits

complement
selected bits

Chapter08.qxd 2/2/2007 6:35 PM Page 273

EON
PreMedia

CONFIRMING PGS

shifts, arithmetic shifts, or rotate-type operations. In either case the shift may
be to the right or to the left.

Table 8-9 lists four types of shift instructions. The logical shift inserts 0 to
the end bit position. The end position is the leftmost bit for shift right and the
rightmost bit position for the shift left. Arithmetic shifts usually conform with
the rules for signed-2’s complement numbers. These rules are given in Sec. 4-6.
The arithmetic shift-right instruction must preserve the sign bit in the leftmost
position. The sign bit is shifted to the right together with the rest of the num-
ber, but the sign bit itself remains unchanged. This is a shift-right operation
with the end bit remaining the same. The arithmetic shift-left instruction
inserts 0 to the end position and is identical to the logical shift-left instruction.
For this reason many computers do not provide a distinct arithmetic shift-left
instruction when the logical shift-left instruction is already available.

The rotate instructions produce a circular shift. Bits shifted out at one
end of the word are not lost as in a logical shift but are circulated back into the
other end. The rotate through carry instruction treats a carry bit as an exten-
sion of the register whose word is being rotated. Thus a rotate-left through
carry instruction transfers the carry bit into the rightmost bit position of the
register, transfers the leftmost bit position into the carry, and at the same time,
shifts the entire register to the left.

Some computers have a multiple-field format for the shift instructions.
One field contains the operation code and the others specify the type of shift
and the number of times that an operand is to be shifted. A possible instruc-
tion code format of a shift instruction may include five fields as follows:

OP REG TYPE RL COUNT

Here OP is the operation code field; REG is a register address that specifies
the location of the operand; TYPE is a 2-bit field specifying the four differ-
ent types of shifts; RL is a 1-bit field specifying a shift right or left; and
COUNT is a k-bit field specifying up to 2k � 1 shifts. With such a format, it
is possible to specify the type of shift, the direction, and the number of shifts,
all in one instruction.

274 CHAPTER EIGHT Central Processing Unit

TABLE 8-9 Typical Shift Instructions

Name Mnemonic

Logical shift right SHR
Logical shift left SHL
Arithmetic shift right SHRA
Arithmetic shift left SHLA
Rotate right ROR
Rotate left ROL
Rotate right through carry RORC
Rotate left through carry ROLC

Chapter08.qxd 2/2/2007 6:35 PM Page 274

EON
PreMedia

CONFIRMING PGS

8-7 Program Control
Instructions are always stored in successive memory locations. When
processed in the CPU, the instructions are fetched from consecutive memory
locations and executed. Each time an instruction is fetched from memory,
the program counter is incremented so that it contains the address of the
next instruction in sequence. After the execution of a data transfer or data
manipulation instruction, control returns to the fetch cycle with the program
counter containing the address of the instruction next in sequence. On the
other hand, a program control type of instruction, when executed, may
change the address value in the program counter and cause the flow of con-
trol to be altered. In other words, program control instructions specify con-
ditions for altering the content of the program counter, while data transfer
and manipulation instructions specify conditions for data-processing opera-
tions. The change in value of the program counter as a result of the execution
of a program control instruction causes a break in the sequence of instruction
execution. This is an important feature in digital computers, as it provides
control over the flow of program execution and a capability for branching to
different program segments.

Some typical program control instructions are listed in Table 8-10. The
branch and jump instructions are used interchangeably to mean the same thing,
but sometimes they are used to denote different addressing modes. The branch
is usually a one-address instruction. It is written in assembly language as BR
ADR, where ADR is a symbolic name for an address. When executed, the
branch instruction causes a transfer of the value of ADR into the program
counter. Since the program counter contains the address of the instruction to
be executed, the next instruction will come from location ADR.

Branch and jump instructions may be conditional or unconditional. An
unconditional branch instruction causes a branch to the specified address
without any conditions. The conditional branch instruction specifies a condi-
tion such as branch if positive or branch if zero. If the condition is met, the
program counter is loaded with the branch address and the next instruction is

SECTION 8-7 Program Control 275

TABLE 8-10 Typical Program Control
Instructions

Name Mnemonic

Branch BR
Jump JMP
Skip SKP
Call CALL
Return RET
Compare (by subtraction) CMP
Test (by ANDing) TST

Chapter08.qxd 2/2/2007 6:35 PM Page 275

EON
PreMedia

CONFIRMING PGS

taken from this address. If the condition is not met, the program counter is not
changed and the next instruction is taken from the next location in sequence.

The skip instruction does not need an address field and is therefore a
zero-address instruction. A conditional skip instruction will skip the next
instruction if the condition is met. This is accomplished by incrementing the
program counter during the execute phase in addition to its being incremented
during the fetch phase. If the condition is not met, control proceeds with the
next instruction in sequence where the programmer inserts an unconditional
branch instruction. Thus a skip-branch pair of instructions causes a branch if
the condition is not met, while a single conditional branch instruction causes a
branch if the condition is met.

The call and return instructions are used in conjunction with subroutines.
Their performance and implementation are discussed later in this section. The
compare and test instructions do not change the program sequence directly.
They are listed in Table 8-10 because of their application in setting conditions
for subsequent conditional branch instructions. The compare instruction per-
forms a subtraction between two operands, but the result of the operation is
not retained. However, certain status bit conditions are set as a result of the
operation. Similarly, the test instruction performs the logical AND of two
operands and updates certain status bits without retaining the result or chang-
ing the operands. The status bits of interest are the carry bit, the sign bit, a zero
indication, and an overflow condition. The generation of these status bits will
be discussed first and then we will show how they are used in conditional
branch instructions.

Status Bit Conditions
It is sometimes convenient to supplement the ALU circuit in the CPU with a
status register where status bit conditions can be stored for further analysis.
Status bits are also called condition-code bits or flag bits. Figure 8-8 shows the
block diagram of an 8-bit ALU with a 4-bit status register. The four status bits
are symbolized by C, S, Z, and V . The bits are set or cleared as a result of an
operation performed in the ALU.

1. Bit C (carry) is set to 1 if the end carry C8 is 1. It is cleared to 0 if the
carry is 0.

2. Bit S (sign) is set to 1 if the highest-order bit F7 is 1. It is set to 0 if the
bit is 0.

3. Bit Z (zero) is set to 1 if the output of the ALU contains all 0’s. It is
cleared to 0 otherwise. In other words, Z � 1 if the output is zero and
Z � 0 if the output is not zero.

4. Bit V (overflow) is set to 1 if the exclusive-OR of the last two carries
is equal to 1, and cleared to 0 otherwise. This is the condition for an

276 CHAPTER EIGHT Central Processing Unit

Chapter08.qxd 2/2/2007 6:35 PM Page 276

EON
PreMedia

CONFIRMING PGS

overflow when negative numbers are in 2’s complement (see Sec. 3-3).
For the 8-bit ALU, V � 1 if the output is greater than �127 or less
than �128.

The status bits can be checked after an ALU operation to determine cer-
tain relationships that exist between the values of A and B. If bit V is set after the
addition of two signed numbers, it indicates an overflow condition. If Z is
set after an exclusive-OR operation, it indicates that A � B. This is so because
x � x � 0, and the exclusive-OR of two equal operands gives an all-0’s result
which sets the Z bit. A single bit in A can be checked to determine if it is 0 or 1
by masking all bits except the bit in question and then checking the Z status bit.
For example, let A � 101x1100, where x is the bit to be checked. The AND oper-
ation of A with B � 00010000 produces a result 000x0000. If x � 0, the Z status
bit is set, but if x � 1, the Z bit is cleared since the result is not zero. The AND
operation can be generated with the TEST instruction listed in Table 8-10 if the
original content of A must be preserved.

Conditional Branch Instructions
Table 8-11 gives a list of the most common branch instructions. Each mnemonic
is constructed with the letter B (for branch) and an abbreviation of the condi-
tion name. When the opposite condition state is used, the letter N (for no) is

SECTION 8-7 Program Control 277

C7

F7

8

C8

8-bit ALU

8 8

BA

Output F

Check for zero output

F7 � F0
V Z S C

Figure 8-8 Status register bits.

Chapter08.qxd 2/2/2007 6:35 PM Page 277

EON
PreMedia

CONFIRMING PGS

inserted to define the 0 state. Thus BC is Branch on Carry, and BNC is Branch
on No Carry. If the stated condition is true, program control is transferred to
the address specified by the instruction. If not, control continues with the
instruction that follows. The conditional instructions can be associated also
with the jump, skip, call, or return type of program control instructions.

The zero status bit is used for testing if the result of an ALU operation is
equal to zero or not. The carry bit is used to check if there is a carry out of the
most significant bit position of the ALU. It is also used in conjunction with the
rotate instructions to check the bit shifted from the end position of a register
into the carry position. The sign bit reflects the state of the most significant bit
of the output from the ALU. S � 0 denotes a positive sign and S � 1, a nega-
tive sign. Therefore, a branch on plus checks for a sign bit of 0 and a branch
on minus checks for a sign bit of 1. It must be realized, however, that these
two conditional branch instructions can be used to check the value of the most
significant bit whether it represents a sign or not. The overflow bit is used in
conjunction with arithmetic operations done on signed numbers in 2’s com-
plement representation.

278 CHAPTER EIGHT Central Processing Unit

TABLE 8-11 Conditional Branch Instructions

Mnemonic Branch condition Tested condition

BZ Branch if zero Z � 1
BNZ Branch if not zero Z � 0
BC Branch if carry C � 1
BNC Branch if no carry C � 0
BP Branch if plus S � 0
BM Branch if minus S � 1
BV Branch if overflow V � 1
BNV Branch if no overflow V � 0

Unsigned compare conditions (A — B)
BHI Branch if higher A � B
BHE Branch if higher or equal A � B
BLO Branch if lower A � B
BLOE Branch if lower or equal A 	 B
BE Branch if equal A � B
BNE Branch if not equal A
 B

Signed compare conditions (A — B)
BGT Branch if greater than A � B
BGE Branch if greater or equal A � B
BLT Branch if less than A � B
BLE Branch if less or equal A 	 B
BE Branch if equal A � B
BNE Branch if not equal A
 B

Chapter08.qxd 2/2/2007 6:35 PM Page 278

EON
PreMedia

CONFIRMING PGS

As stated previously, the compare instruction performs a subtraction of
two operands, say A � B. The result of the operation is not transferred into a
destination register, but the status bits are affected. The status register provides
information about the relative magnitude of A and B. Some computers provide
conditional branch instructions that can be applied right after the execution of
a compare instruction. The specific conditions to be tested depend on whether
the two numbers A and B are considered to be unsigned or signed numbers.
Table 8-11 gives a list of such conditional branch instructions. Note that we use
the words higher and lower to denote the relations between unsigned numbers,
and greater and less than for signed numbers. The relative magnitude shown
under the tested condition column in the table seems to be the same for
unsigned and signed numbers. However, this is not the case since each must be
considered separately as explained in the following numerical example.

Consider an 8-bit ALU as shown in Fig. 8-8. The largest unsigned num-
ber that can be accommodated in 8 bits is 255. The range of signed numbers
is between �127 and �128. The subtraction of two numbers is the same
whether they are unsigned or in signed-2’s complement representation (see
Chap. 3). Let A � 11110000 and B � 00010100. To perform A � B, the ALU
takes the 2’s complement of B and adds it to A.

A: 11110000
B
—

� 1: �11101100
A � B: 11011100 C � 1 S � 1 V � 0 Z � 0

The compare instruction updates the status bits as shown. C � 1 because there
is a carry out of the last stage. S � 1 because the leftmost bit is 1. V � 0
because the last two carries are both equal to 1, and Z � 0 because the result
is not equal to 0.

If we assume unsigned numbers, the decimal equivalent of A is 240 and
that of B is 20. The subtraction in decimal is 240 � 20 � 220. The binary
result 11011100 is indeed the equivalent of decimal 220. Since 240 � 20, we
have that A � B and A
 B. These two relations can also be derived from the
fact that status bit C is equal to 1 and bit Z is equal to 0. The instructions that
will cause a branch after this comparison are BHI (branch if higher), BHE
(branch if higher or equal), and BNE (branch if not equal).

If we assume signed numbers, the decimal equivalent of A is �16. This
is because the sign of A is negative and 11110000 is the 2’s complement of
00010000, which is the decimal equivalent of �16. The decimal equivalent of
B is �20. The subtraction in decimal is (�16) � (�20) � �36. The binary
result 11011100 (the 2’s complement of 00100100) is indeed the equivalent of
decimal �36. Since (�16) � (�20) we have that A � B and A
 B. These two
relations can also be derived from the fact that status bits S � 1 (negative),
V � 0 (no overflow), and Z � 0 (not zero). The instructions that will cause a
branch after this comparison are BLT (branch if less than), BLE (branch if less
or equal), and BNE (branch if not equal).

SECTION 8-7 Program Control 279

numerical example

Chapter08.qxd 2/2/2007 6:35 PM Page 279

EON
PreMedia

CONFIRMING PGS

It should be noted that the instruction BNE and BNZ (branch if not zero)
are identical. Similarly, the two instructions BE (branch if equal) and BZ
(branch if zero) are also identical. Each is repeated three times in Table 8-11
for the purpose of clarity and completeness.

It should be obvious from the example that the relative magnitude of two
unsigned numbers can be determined (after a compare instruction) from the val-
ues of status bits C and Z (see Prob. 8-26). The relative magnitude of two signed
numbers can be determined from the values of S, V, and Z (see Prob. 8-27).

Some computers consider the C bit to be a borrow bit after a subtrac-
tion operation A � B. A borrow does not occur if A � B, but a bit must be
borrowed from the next most significant position if A � B. The condition
for a borrow is the complement of the carry obtained when the subtraction
is done by taking the 2’s complement of B. For this reason, a processor that
considers the C bit to be a borrow after a subtraction will complement the
C bit after adding the 2’s complement of the subtrahend and denote this bit
a borrow.

Subroutine Call and Return
A subroutine is a self-contained sequence of instructions that performs a given
computational task. During the execution of a program, a subroutine may be
called to perform its function many times at various points in the main pro-
gram. Each time a subroutine is called, a branch is executed to the beginning
of the subroutine to start executing its set of instructions. After the subroutine
has been executed, a branch is made back to the main program.

The instruction that transfers program control to a subroutine is known
by different names. The most common names used are call subroutine, jump
to subroutine, branch to subroutine, or branch and save address. A call subroutine
instruction consists of an operation code together with an address that spec-
ifies the beginning of the subroutine. The instruction is executed by per-
forming two operations: (1) the address of the next instruction available in
the program counter (the return address) is stored in a temporary location so
the subroutine knows where to return, and (2) control is transferred to the
beginning of the subroutine. The last instruction of every subroutine, com-
monly called return from subroutine, transfers the return address from the tem-
porary location into the program counter. This results in a transfer of
program control to the instruction whose address was originally stored in the
temporary location.

Different computers use a different temporary location for storing the
return address. Some store the return address in the first memory location of
the subroutine, some store it in a fixed location in memory, some store it in a
processor register, and some store it in a memory stack. The most efficient way
is to store the return address in a memory stack. The advantage of using a
stack for the return address is that when a succession of subroutines is called,
the sequential return addresses can be pushed into the stack. The return from

280 CHAPTER EIGHT Central Processing Unit

Chapter08.qxd 2/2/2007 6:35 PM Page 280

EON
PreMedia

CONFIRMING PGS

subroutine instruction causes the stack to pop and the contents of the top of
the stack are transferred to the program counter. In this way, the return is
always to the program that last called a subroutine. A subroutine call is imple-
mented with the following microoperations:

SP ← SP � 1 Decrement stack pointer

M [SP] ← PC Push content of PC onto the stack

PC ← effective address Transfer control to the subroutine

If another subroutine is called by the current subroutine, the new return
address is pushed into the stack, and so on. The instruction that returns from
the last subroutine is implemented by the microoperations:

PC ← M [SP] Pop stack and transfer to PC

SP ← SP � 1 Increment stack pointer

By using a subroutine stack, all return addresses are automatically stored
by the hardware in one unit. The programmer does not have to be concerned
or remember where the return address was stored.

A recursive subroutine is a subroutine that calls itself. If only one register or
memory location is used to store the return address, and the recursive sub-
routine calls itself, it destroys the previous return address. This is undesirable
because vital information is destroyed. This problem can be solved if different
storage locations are employed for each use of the subroutine while another
lighter-level use is still active. When a stack is used, each return address can
be pushed into the stack without destroying any previous values. This solves
the problem of recursive subroutines because the next subroutine to exit is
always the last subroutine that was called.

Program Interrupt
The concept of program interrupt is used to handle a variety of problems that
arise out of normal program sequence. Program interrupt refers to the trans-
fer of program control from a currently running program to another service
program as a result of an external or internal generated request. Control
returns to the original program after the service program is executed.

The interrupt procedure is, in principle, quite similar, to a subroutine call
except for three variations: (1) The interrupt is usually initiated by an internal
or external signal rather than from the execution of an instruction (except for
software interrupt as explained later); (2) the address of the interrupt service
program is determined by the hardware rather than from the address field of
an instruction; and (3) an interrupt procedure usually stores all the information

SECTION 8-7 Program Control 281

Chapter08.qxd 2/2/2007 6:35 PM Page 281

EON
PreMedia

CONFIRMING PGS

necessary to define the state of the CPU rather than storing only the program
counter. These three procedural concepts are clarified further below.

After a program has been interrupted and the service routine been exe-
cuted, the CPU must return to exactly the same state that it was when the
interrupt occurred. Only if this happens will the interrupted program be able
to resume exactly as if nothing had happened. The state of the CPU at the end
of the execute cycle (when the interrupt is recognized) is determined from:

1. The content of the program counter
2. The content of all processor registers
3. The content of certain status conditions

The collection of all status bit conditions in the CPU is sometimes called
a program status word or PSW. The PSW is stored in a separate hardware reg-
ister and contains the status information that characterizes the state of the
CPU. Typically, it includes the status bits from the last ALU operation and it
specifies the interrupts that are allowed to occur and whether the CPU is
operating in a supervisor or user mode. Many computers have a resident oper-
ating system that controls and supervises all other programs in the computer.
When the CPU is executing a program that is part of the operating system, it
is said to be in the supervisor or system mode. Certain instructions are privi-
leged and can be executed in this mode only. The CPU is normally in the user
mode when executing user programs. The mode that the CPU is operating at
any given time is determined from special status bits in the PSW.

Some computers store only the program counter when responding to an
interrupt. The service program must then include instructions to store status
and register content before these resources are used. Only a few computers
store both program counter and all status and register content in response to
an interrupt. Most computers just store the program counter and the PSW. In
some cases, there exist two sets of processor registers within the computer, one
for each CPU mode. In this way, when the program switches from the user to
the supervisor mode (or vice versa) in response to an interrupt, it is not nec-
essary to store the contents of processor registers as each mode uses its own
set of registers.

The hardware procedure for processing an interrupt is very similar to
the execution of a subroutine call instruction. The state of the CPU is pushed
into a memory stack and the beginning address of the service routine is trans-
ferred to the program counter. The beginning address of the service routine
is determined by the hardware rather than the address field of an instruction.
Some computers assign one memory location where interrupts are always
transferred. The service routine must then determine what caused the inter-
rupt and proceed to service it. Some computers assign a memory location for
each possible interrupt. Sometimes, the hardware interrupt provides its own
address that directs the CPU to the desired service routine. In any case, the CPU

282 CHAPTER EIGHT Central Processing Unit

program status
word

supervisor mode

Chapter08.qxd 2/2/2007 6:35 PM Page 282

EON
PreMedia

CONFIRMING PGS

must possess some form of hardware procedure for selecting a branch address
for servicing the interrupt.

The CPU does not respond to an interrupt until the end of an instruction
execution. Just before going to the next fetch phase, control checks for any
interrupt signals. If an interrupt is pending, control goes to a hardware inter-
rupt cycle. During this cycle, the contents of PC and PSW are pushed onto the
stack. The branch address for the particular interrupt is then transferred to PC
and a new PSW is loaded into the status register. The service program can
now be executed starting from the branch address and having a CPU mode as
specified in the new PSW.

The last instruction in the service program is a return from interrupt
instruction. When this instruction is executed, the stack is popped to retrieve
the old PSW and the return address. The PSW is transferred to the status reg-
ister and the return address to the program counter. Thus the CPU state is
restored and the original program can continue executing.

Types of Interrupts
There are three major types of interrupts that cause a break in the normal exe-
cution of a program. They can be classified as:

1. External interrupts
2. Internal interrupts
3. Software interrupts

External interrupts come from input–output (I/O) devices, from a timing
device, from a circuit monitoring the power supply, or from any other exter-
nal source. Examples that cause external interrupts are I/O device requesting
transfer of data, I/O device finished transfer of data, elapsed time of an event,
or power failure. Timeout interrupt may result from a program that is in an
endless loop and thus exceeded its time allocation. Power failure interrupt
may have as its service routine a program that transfers the complete state of
the CPU into a nondestructive memory in the few milliseconds before power
ceases.

Internal interrupts arise from illegal or erroneous use of an instruction or
date. Internal interrupts are also called traps. Examples of interrupts caused by
internal error conditions are register overflow, attempt to divide by zero, an
invalid operation code, stack overflow, and protection violation. These error
conditions usually occur as a result of a premature termination of the instruc-
tion execution. The service program that processes the internal interrupt
determines the corrective measure to be taken.

The difference between internal and external interrupts is that the inter-
nal interrupt is initiated by some exceptional condition caused by the program
itself rather than by an external event. Internal interrupts are synchronous with

SECTION 8-7 Program Control 283

Chapter08.qxd 2/2/2007 6:35 PM Page 283

EON
PreMedia

CONFIRMING PGS

the program while external interrupts are asynchronous. If the program is
rerun, the internal interrupts will occur in the same place each time. External
interrupts depend on external conditions that are independent of the program
being executed at the time.

External and internal interrupts are initiated from signals that occur in
the hardware of the CPU. A software interrupt is initiated by executing an
instruction. Software interrupt is a special call instruction that behaves like
an interrupt rather than a subroutine call. It can be used by the program-
mer to initiate an interrupt procedure at any desired point in the program.
The most common use of software interrupt is associated with a supervisor
call instruction. This instruction provides means for switching from a CPU
user mode to the supervisor mode. Certain operations in the computer may
be assigned to the supervisor mode only, as for example, a complex input
or output transfer procedure. A program written by a user must run in the
user mode. When an input or output transfer is required, the supervisor
mode is requested by means of a supervisor call instruction. This instruc-
tion causes a software interrupt that stores the old CPU state and brings in
a new PSW that belongs to the supervisor mode. The calling program must
pass information to the operating system in order to specify the particular
task requested.

8-8 Reduced Instruction Set Computer (RISC)
An important aspect of computer architecture is the design of the instruction
set for the processor. The instruction set chosen for a particular computer
determines the way that machine language programs are constructed. Early
computers had small and simple instruction sets, forced mainly by the need
to minimize the hardware used to implement them. As digital hardware
became cheaper with the advent of integrated circuits, computer instructions
tended to increase both in number and complexity. Many computers have
instruction sets that include more than 100 and sometimes even more than
200 instructions. These computers also employ a variety of data types and a
large number of addressing modes. The trend into computer hardware com-
plexity was influenced by various factors, such as upgrading existing models
to provide more customer applications, adding instructions that facilitate the
translation from high-level language into machine language programs, and
striving to develop machines that move functions from software implementa-
tion into hardware implementation. A computer with a large number of
instructions is classified as a complex instruction set computer, abbreviated CISC.

In the early 1980s, a number of computer designers recommended that
computers use fewer instructions with simple constructs so they can be exe-
cuted much faster within the CPU without having to use memory as often.
This type of computer is classified as a reduced instruction set computer or RISC.

284 CHAPTER EIGHT Central Processing Unit

software interrupt

CISC

RISC

Chapter08.qxd 2/2/2007 6:35 PM Page 284

EON
PreMedia

CONFIRMING PGS

In this section we introduce the major characteristics of CISC and RISC archi-
tectures and then present the instruction set and instruction format of a RISC
processor.

CISC Characteristics
The design of an instruction set for a computer must take into consideration
not only machine language constructs, but also the requirements imposed on
the use of high-level programming languages. The translation from high-level
to machine language programs is done by means of a compiler program. One
reason for the trend to provide a complex instruction set is the desire to sim-
plify the compilation and improve the overall computer performance. The
task of a compiler is to generate a sequence of machine instructions for each
high-level language statement. The task is simplified if there are machine
instructions that implement the statements directly. The essential goal of a
CISC architecture is to attempt to provide a single machine instruction for
each statement that is written in a high-level language. Examples of CISC
architectures are the Digital Equipment Corporation VAX computer and the
IBM 370 computer.

Another characteristic of CISC architecture is the incorporation of variable-
length instruction formats. Instructions that require register operands may be
only two bytes in length, but instructions that need two memory addresses
may need five bytes to include the entire instruction code. If the computer has
32-bit words (four bytes), the first instruction occupies half a word, while the
second instruction needs one word in addition to one byte in the next word.
Packing variable instruction formats in a fixed-length memory word requires
special decoding circuits that count bytes within words and frame the instruc-
tions according to their byte length.

The instructions in a typical CISC processor provide direct manipula-
tion of operands residing in memory. For example, an ADD instruction may
specify one operand in memory through index addressing and a second
operand in memory through a direct addressing. Another memory location
may be included in the instruction to store the sum. This requires three mem-
ory references during execution of the instruction. Although CISC processors
have instructions that use only processor registers, the availability of other
modes of operations tend to simplify high-level language compilation. However,
as more instructions and addressing modes are incorporated into a computer,
the more hardware logic is needed to implement and support them, and this
may cause the computations to slow down. In summary, the major character-
istics of CISC architecture are:

1. A large number of instructions—typically from 100 to 250 instructions
2. Some instructions that perform specialized tasks and are used infre-

quently

SECTION 8-8 Reduced Instruction Set Computer (RISC) 285

Chapter08.qxd 2/2/2007 6:35 PM Page 285

EON
PreMedia

CONFIRMING PGS

3. A large variety of addressing modes—typically from 5 to 20 different
modes

4. Variable-length instruction formats
5. Instructions that manipulate operands in memory

RISC Characteristics
The concept of RISC architecture involves an attempt to reduce execution
time by simplifying the instruction set of the computer. The major character-
istics of a RISC processor are:

1. Relatively few instructions
2. Relatively few addressing modes
3. Memory access limited to load and store instructions
4. All operations done within the registers of the CPU
5. Fixed-length, easily decoded instruction format
6. Single-cycle instruction execution
7. Hardwired rather than microprogrammed control

The small set of instructions of a typical RISC processor consists mostly
of register-to-register operations, with only simple load and store operations
for memory access. Thus each operand is brought into a processor register
with a load instruction. All computations are done among the data stored in
processor registers. Results are transferred to memory by means of store
instructions. This architectural feature simplifies the instruction set and
encourages the optimization of register manipulation. The use of only a few
addressing modes results from the fact that almost all instructions have simple
register addressing. Other addressing modes may be included, such as imme-
diate operands and relative mode.

By using a relatively simple instruction format, the instruction length can
be fixed and aligned on word boundaries. An important aspect of RISC
instruction format is that it is easy to decode. Thus the operation code and reg-
ister fields of the instruction code can be accessed simultaneously by the con-
trol. By simplifying the instructions and their format, it is possible to simplify
the control logic. For faster operations, a hardwired control is preferable over
a microprogrammed control. An example of hardwired control is presented in
Chap. 5 in conjunction with the control unit of the basic computer. Examples
of microprogrammed control are presented in Chap. 7.

A characteristic of RISC processors is their ability to execute one instruc-
tion per clock cycle. This is done by overlapping the fetch, decode, and execute
phases of two or three instructions by using a procedure referred to as pipelin-
ing. A load or store instruction may require two clock cycles because access to

286 CHAPTER EIGHT Central Processing Unit

Chapter08.qxd 2/2/2007 6:35 PM Page 286

EON
PreMedia

CONFIRMING PGS

memory takes more time than register operations. Efficient pipelining, as well
as a few other characteristics, are sometimes attributed to RISC, although they
may exist in non-RISC architectures as well. Other characteristics attributed
to RISC architecture are:

1. A relatively large number of registers in the processor unit
2. Use of overlapped register windows to speed-up procedure call and

return
3. Efficient instruction pipeline
4. Compiler support for efficient translation of high-level language pro-

grams into machine language programs

A large number of registers is useful for storing intermediate results
and for optimizing operand references. The advantage of register storage as
opposed to memory storage is that registers can transfer information to other
registers much faster than the transfer of information to and from memory.
Thus register-to-memory operations can be minimized by keeping the most
frequent accessed operands in registers. Studies that show improved per-
formance for RISC architecture do not differentiate between the effects of the
reduced instruction set and the effects of a large register file. For this reason
a large number of registers in the processing unit are sometimes associated
with RISC processors. The use of overlapped register windows when trans-
ferring program control after a procedure call is explained below. Instruction
pipeline in RISC is presented in Sec. 9-5 after we explain the concept of
pipelining.

Overlapped Register Windows
Procedure call and return occurs quite often in high-level programming lan-
guages. When translated into machine language, a procedure call produces a
sequence of instructions that save register values, pass parameters needed for
the procedure, and then calls a subroutine to execute the body of the proce-
dure. After a procedure return, the program restores the old register values,
passes results to the calling program, and returns from the subroutine. Saving
and restoring registers and passing of parameters and results involve time-
consuming operations. Some computers provide multiple-register banks, and
each procedure is allocated its own bank of registers. This eliminates the need
for saving and restoring register values. Some computers use the memory
stack to store the parameters that are needed by the procedure, but this
requires a memory access every time the stack is accessed.

A characteristic of some RISC processors is their use of overlapped register
windows to provide the passing of parameters and avoid the need for saving
and restoring register values. Each procedure call results in the allocation of a

SECTION 8-8 Reduced Instruction Set Computer (RISC) 287

pipelining

Chapter08.qxd 2/2/2007 6:35 PM Page 287

EON
PreMedia

CONFIRMING PGS

new window consisting of a set of registers from the register file for use by the
new procedure. Each procedure call activates a new register window by incre-
menting a pointer, while the return statement decrements the pointer and
causes the activation of the previous window. Windows for adjacent proce-
dures have overlapping registers that are shared to provide the passing of
parameters and results.

The concept of overlapped register windows is illustrated in Fig. 8-9. The
system has a total of 74 registers. Registers R0 through R 9 are global registers
that hold parameters shared by all procedures. The other 64 registers are
divided into four windows to accommodate procedures A, B, C, and D. Each
register window consists of 10 local registers and two sets of six registers com-
mon to adjacent windows. Local registers are used for local variables.
Common registers are used for exchange of parameters and results between
adjacent procedures. The common overlapped registers permit parameters to
be passed without the actual movement of data. Only one register window is
activated at any given time with a pointer indicating the active window. Each
procedure call activates a new register window by incrementing the pointer.
The high registers of the calling procedure overlap the low registers of the
called procedure, and therefore the parameters automatically transfer from
calling to called procedure.

As an example, suppose that procedure A calls procedure B. Registers
R26 through R 31 are common to both procedures, and therefore procedure
A stores the parameters for procedure B in these registers. Procedure B uses
local registers R 32 through R 41 for local variable storage. If procedure B calls
procedure C, it will pass the parameters through registers R 42 through R 47.
When procedure B is ready to return at the end of its computation, the pro-
gram stores results of the computation in registers R 26 through R 31 and trans-
fers back to the register window of procedure A. Note that registers R10
through R15 are common to procedures A and D because the four windows
have a circular organization with A being adjacent to D.

As mentioned previously, the 10 global registers R0 through R 9 are
available to all procedures. Each procedure in Fig. 8-9 has available a total of
32 registers while it is active. This includes 10 global registers, 10 local regis-
ters, six low overlapping registers, and six high overlapping registers. Other
fixed-size register window schemes are possible, and each may differ in the
size of the register window and the size of the total register file. In general, the
organization of register windows will have the following relationships:

number of global registers � G

number of local registers in each window � L

number of registers common to two windows � C

number of windows � W

288 CHAPTER EIGHT Central Processing Unit

Chapter08.qxd 2/2/2007 6:35 PM Page 288

EON
PreMedia

CONFIRMING PGS

SECTION 8-8 Reduced Instruction Set Computer (RISC) 289

Common to D and A

Local to D

Proc D

Common to C and D

R15

R10
R73

R64

Local to C

Proc C

Common to B and C

R57

R48

R63

R58

R47

R42

Local to B

Local to A
Proc B

Proc A

Common to A and B

Common to A and D

R41

R32

R31

R26

R9

R0

Global
registers

Common to all
procedures

R 25

R16

R15

R10

Figure 8-9 Overlapped register windows.

Chapter08.qxd 2/2/2007 6:35 PM Page 289

EON
PreMedia

CONFIRMING PGS

The number of registers available for each window is calculated as follows:

window size � L � 2C � G

The total number of registers needed in the processor is

register file � (L � C)W � G

In the example of Fig. 8-9 we have G � 10, L � 10, C � 6, and W � 4. The
window size is 10 � 12 � 10 � 32 registers, and the register file consists of
(10 � 6) � 4 � 10 � 74 registers.

Berkeley RISC I
One of the first projects intended to show the advantages of RISC architecture
was conducted at the University of California, Berkeley. The Berkeley RISC I is
a 32-bit integrated circuit CPU. It supports 32-bit addresses and either 8-, 16-, or
32-bit data. It has a 32-bit instruction format and a total of 31 instructions. There
are three basic addressing modes: register addressing, immediate operand, and
relative to PC addressing for branch instructions. It has a register file of 138
registers arranged into 10 global registers and 8 windows of 32 registers in each.
The 32 registers in each window have an organization similar to the one shown
in Fig. 8-9. Since only one set of 32 registers in a window is accessed at any given
time, the instruction format can specify a processor register with a register field
of five bits.

Figure 8-10 shows the 32-bit instruction formats used for register-to-
register instructions and memory access instructions. Seven of the bits in the
operation code specify an operation, and the eighth bit indicates whether to
update the status bits after an ALU operation. For register-to-register instruc-
tions, the 5-bit Rd field selects one of the 32 registers as a destination for the
result of the operation. The operation is performed with the data specified in
fields Rs and S2. Rs is one of the source registers. If bit 13 of the instruction is
0, the low-order 5 bits of S2 specify another source register. If bit 13 of the
instruction is 1, S2 specifies a sign-extended 13-bit constant. Thus the instruc-
tion has a three-address format, but the second source may be either a regis-
ter or an immediate operand. Memory access instructions use Rs to specify a
32-bit address in a register and S2 to specify an offset. Register R0 contains all
0’s, so it can be used in any field to specify a zero quantity. The third instruc-
tion format combines the last three fields to form a 19-bit relative address Y
and is used primarily with the jump and call instructions. The COND field
replaces the Rd field for jump instructions and is used to specify one of 16 pos-
sible branch conditions.

The 31 instructions of RISC I are listed in Table 8-12. They have been
grouped into three categories. Data manipulation instructions perform arithmetic,

290 CHAPTER EIGHT Central Processing Unit

Chapter08.qxd 2/2/2007 6:35 PM Page 290

EON
PreMedia

CONFIRMING PGS

logic, and shift operations. The symbols under the opcode and operands
columns are used when writing assembly language programs. The register
transfer and description columns explain the instruction in register transfer
notation and in words. Note that all instructions have three operands. The sec-
ond source S2 can be either a register or an immediate operand, symbolized
by the number sign #. Consider, for example, the ADD instruction and how
it can be used to perform a variety of operations.

ADD R22, R21, R23 R23 ← R22 � R2l
ADD R22, #150, R23 R23 ← R22 � 150
ADD R0, R21, R22 R22 ← R21 (Move)
ADD R0, #150, R22 R22 ← 150 (Load immediate)
ADD R22, #1, R22 R22 ← R22 � 1 (Increment)

By using register R0, which always contains 0’s, it is possible to transfer the
contents of one register or a constant into another register. The increment
operation is accomplished by adding a constant 1 to a register.

The data transfer instructions consist of six load instructions, three store
instructions, and two instructions that transfer the program status word PSW.
The register that holds PSW contains the status of the CPU and includes the
program counter, the status bits from the ALU, pointers used in conjunction
with the register windows, and other information that determines the state of
the CPU.

SECTION 8-8 Reduced Instruction Set Computer (RISC) 291

31 24

8 5 5 1 8 5

S2Not used

(a) Register mode: (S2 specifies a register)

0RsRdOpcode

23 18 13 12 4 0519

31 24

8 5 5 1 13

S2

(b) Register–immediate mode: (S2 specifies an operand)

1RsRdOpcode

23 18 13 12 019

31 24

8 5 19

Y

(c) PC relative mode:

CONDOpcode

23 18 019

14

14

Figure 8-10 Berkeley RISC 1 instruction formats.

Chapter08.qxd 2/2/2007 6:35 PM Page 291

EON
PreMedia

CONFIRMING PGS

292 CHAPTER EIGHT Central Processing Unit

TABLE 8-12 Instruction Set of Berkeley RISC I

Opcode Operands Register Transfer Description

Data manipulation instructions
ADD Rs,S2,Rd Rd ← Rs � S2 Integer add
ADDC Rs,S2,Rd Rd ← Rs � S2 � carry Add with carry
SUB Rs,S2,Rd Rd ← Rs � S2 Integer subtract
SUBC Rs,S2,Rd Rd ← Rs � S2 � carry Subtract with carry
SUBR Rs,S2,Rd Rd ←S2 � Rs Subtract reverse
SUBCR Rs,S2,Rd Rd ← S2 � Rs � carry Subtract with carry
AND Rs,S2,Rd Rd ← Rs � S2 AND
OR Rs,S2,Rd Rd ← Rs � S2 OR
XOR Rs,S2,Rd Rd ← Rs � S2 Exclusive-OR
SLL Rs,S2,Rd Rd ← Rs shifted by S2 Shift-left
SRL Rs,S2,Rd Rd ← Rs shifted by S2 Shift-right logical
SRA Rs,S2,Rd Rd ← Rs shifted by S2 Shift-right arithmetic

Data transfer instructions
LDL (Rs)S2,Rd Rd ← M [Rs � S2] Load long
LDSU (Rs)S2,Rd Rd ← M [Rs � S2] Load short unsigned
LDSS (Rs)S2,Rd Rd ← M [Rs � S2] Load short signed
LDBU (Rs)S2,Rd Rd ← M [Rs � S2] Load byte unsigned
LDBS (Rs)S2,Rd Rd ← M [Rs � S2] Load byte signed
LDHI Rd,Y Rd ← Y Load immediate high
STL Rd,(Rs)S2 M [Rs � S2] ← Rd Store long
STS Rd,(Rs)S2 M [Rs � S2] ← Rd Store short
STB Rd,(Rs)S2 M [Rs � S2] ← Rd Store byte
GETPSW Rd Rd ← PSW Load status word
PUTPSW Rd PSW ← Rd Set status word

Program control instructions
JMP COND, PC ← Rs � S2 Conditional jump

S2(Rs)
JMPR COND,Y PC ← PC � Y Jump relative
CALL Rd,S2(Rs) Rd ← PC Call subroutine

PC ← Rs � S2 and
CWP ← CWP � 1 change window

CALLR Rd,Y Rd ← PC Call relative
PC ← PC � Y and
CWP ← CWP � 1 change window

RET Rd,S2 PC ← Rd � S2 Return and
CWP �CWP � 1 change window

CALLINT Rd Rd ← PC Disable interrupts
CWP ← CWP � 1

RETINT Rd,S2 PC ← Rd � S2 Enable interrupts
CWP ← CWP � 1

GTLPC Rd Rd ← PC Get last PC

Chapter08.qxd 2/2/2007 6:35 PM Page 292

EON
PreMedia

CONFIRMING PGS

The load and store instructions move data between a register and mem-
ory. The load instructions accommodate signed or unsigned data of eight bits
(byte) or 16 bits (short word). The long-word instructions operate on 32-bit
data. Although there appears to be a register plus displacement addressing
mode in data transfer instructions, register indirect addressing and direct
addressing is also possible. The following are examples of load long instruc-
tions with different addressing modes.

LDL (R22)#150,R5 R5 ← M[R22] � 150
LDL (R22)#0,R5 R5 ← M[R22]
LDL (R0)#500,R5 R5 ← M[500]

The effective address in the first instruction is evaluated from the contents of
register R22 plus a displacement of 150. The second instruction uses a 0 dis-
placement, which reduces it to a register indirect mode. The third instruction
uses all 0’s from register R0 to produce a direct address type of instruction.

The program control instructions operate with the program counter PC
to control the program sequence. There are two jump and two call instruc-
tions. One uses an index plus displacement addressing; the second uses a rel-
ative to PC mode with the 19-bit Y value as the relative address. The call and
return instructions use a 3-bit CWP (current window pointer) register which
points to the currently active register window. Every time the program calls a
new procedure, CWP is decremented by one to point to the next-lower regis-
ter window. After a return instruction CWP is incremented by one to return to
the previous register window.

SECTION 8-8 Reduced Instruction Set Computer (RISC) 293

PROBLEMS

8-1. A bus-organized CPU similar to Fig. 8-2 has 16 registers with 32 bits in each,
an ALU, and a destination decoder.
a. How many multiplexers are there in the A bus, and what is the size of

each multiplexer?
b. How many selection inputs are needed for MUX A and MUX B?
c. How many inputs and outputs are there in the decoder?
d. How many inputs and outputs are there in the ALU for data, including

input and output carries?
e. Formulate a control word for the system assuming that the ALU has 35

operations.
8-2. The bus system of Fig. 8-2 has the following propagation delay times: 30 ns

for the signals to propagate through the multiplexers, 80 ns to perform the
ADD operation in the ALU, 20 ns delay in the destination decoder, and 10
ns to clock the data into the destination register. What is the minimum cycle
time that can be used for the clock?

Chapter08.qxd 2/2/2007 6:35 PM Page 293

EON
PreMedia

CONFIRMING PGS

8-3. Specify the control word that must be applied to the processor of Fig. 8-2 to
implement the following microoperations.
a. R1 ← R2 � R3
b. R4 ← R4
c. R5 ← R5 � 1
d. R6 ← shl R1
e. R7 ← input

8-4. Determine the microoperations that will be executed in the processor of
Fig. 8-2 when the following 14-bit control words are applied.
a. 00101001100101
b. 00000000000000
c. 01001001001100
d. 00000100000010
e. 11110001110000

8-5. Let SP � 000000 in the stack of Fig. 8-3. How many items are there in the
stack if:
a. FULL � 1 and EMTY � 0?
b. FULL � 0 and EMTY � 1?

8-6. A stack is organized such that SP always points at the next empty location
on the stack. This means that SP can be initialized to 4000 in Fig. 8-4 and
the first item in the stack is stored in location 4000. List the microoperations
for the push and pop operations.

8-7. Convert the following arithmetic expressions from infix to reverse Polish
notation.
a. A * B � C * D � E * F
b. A * B � A * (B * D � C * E)
c. A � B * [C * D � E * (F � G)]

d.
A * [B � C * (D � E)]

F * (G � H)
8-8. Convert the following arithmetic expressions from reverse Polish notation

to infix notation.
a. A B C D E � * � /
b. A B C D E * / � �
c. A B C* / D � E F / �
d. A B C D E F G � * � * � *

8-9. Convert the following numerical arithmetic expression into reverse Polish
notation and show the stack operations for evaluating the numerical result.

(3 � 4)[10(2 � 6) � 8]

8-10. A first-in, first-out (FIFO) has a memory organization that stores informa-
tion in such a manner that the item that is stored first is the first item that is
retrieved. Show how a FIFO memory operates with three counters. A write
counter WC holds the address for writing into memory. A read counter RC
holds the address for reading from memory. An available storage counter
ASC indicates the number of words stored in FIFO. ASC is incremented for
every word stored and decremented for every item that is retrieved.

294 CHAPTER EIGHT Central Processing Unit

Chapter08.qxd 2/2/2007 6:35 PM Page 294

EON
PreMedia

CONFIRMING PGS

SECTION 8-8 Reduced Instruction Set Computer (RISC) 295

8-11. A computer has 32-bit instructions and 12-bit addresses. If there are 250
two-address instructions, how many one-address instructions can be formu-
lated?

8-12. Write a program to evaluate the arithmetic statement:

X � A � B � C * (D * E � F)
G � H * K

a. Using a general register computer with three address instructions.
b. Using a general register computer with two address instructions.
c. Using an accumulator type computer with one address instructions.
d. Using a stack organized computer with zero-address operation instruc-

tions.
8-13. The memory unit of a computer has 256K words of 32 bits each. The com-

puter has an instruction format with four fields: an operation code field, a
mode field to specify one of seven addressing modes, a register address field
to specify one of 60 processor registers, and a memory address. Specify the
instruction format and the number of bits in each field if the in instruction
is in one memory word.

8-14. A two-word instruction is stored in memory at an address designated by the
symbol W. The address field of the instruction (stored at W � 1) is desig-
nated by the symbol Y. The operand used during the execution of the
instruction is stored at an address symbolized by Z. An index register con-
tains the value X. State how Z is calculated from the other addresses if the
addressing mode of the instruction is
a. direct
b. indirect
c. relative
d. indexed

8-15. A relative mode branch type of instruction is stored in memory at an
address equivalent to decimal 750. The branch is made to an address equiv-
alent to decimal 500.
a. What should be the value of the relative address field of the instruction

(in decimal)?
b. Determine the relative address value in binary using 12 bits. (Why must

the number be in 2’s complement?)
c. Determine the binary value in PC after the fetch phase and calculate the

binary value of 500. Then show that the binary value in PC plus the rel-
ative address calculated in part (b) is equal to the binary value of 500.

8-16. How many times does the control unit refer to memory when it fetches and
executes an indirect addressing mode instruction if the instruction is (a) a
computational type requiring an operand from memory; (b) a branch type.

8-17. What must the address field of an indexed addressing mode instruction be
to make it the same as a register indirect mode instruction?

8-18. An instruction is stored at location 300 with its address field at location 301.
The address field has the value 400. A processor register R1 contains the
number 200. Evaluate the effective address if the addressing mode of the

Chapter08.qxd 2/2/2007 6:35 PM Page 295

EON
PreMedia

CONFIRMING PGS

instruction is (a) direct; (b) immediate; (c) relative; (d) register indirect;
(e) index with R1 as the index register.

8-19. Assuming an 8-bit computer, show the multiple precision addition of the
two 32-bit unsigned numbers listed below using the add with carry instruc-
tion. Each byte is expressed as a two-digit hexadecimal number.

(6E C3 56 7A) � (13 55 6B 8F)

8-20. Perform the logic AND, OR, and XOR with the two binary strings
10011100 and 10101010.

8-21. Given the 16-bit value 1001101011001101. What operation must be per-
formed in order to:
a. clear to 0 the first eight bits?
b. set to 1 the last eight bits?
c. complement the middle eight bits?

8-22. An 8-bit register contains the value 01111011 and the carry bit is equal to 1.
Perform the eight shift operations given by the instructions listed in Table 8-9.
Each time, start from the initial value given above.

8-23. Represent the following signed numbers in binary using eight bits. �83;
�83; �68; �68.
a. Perform the addition (�83) � (� 68) in binary and interpret the result

obtained.
b. Perform the subtraction (�68) � (�83) in binary and indicate if there is

an overflow.
c. Shift binary –68 once to the right and give the value of the shifted num-

ber in decimal.
d. Shift binary –83 once to the left and indicate if there is an overflow.

8-24. Show that the circuit labeled “check for zero output” in Fig. 8-8 is an 8-bit
NOR gate.

8-25. An 8-bit computer has a register R. Determine the values of status bits C, S,
Z, and V (Fig. 8-8) after each of the following instructions. The initial value
of register R in each case is hexadecimal 71. The numbers below are also in
hexadecimal.
a. Add immediate operand C6 to R.
b. Add immediate operand IE to R.
c. Subtract immediate operand 9A from R.
d. AND immediate operand 8D to R.
e. Exclusive-OR R with R.

8-26. Two unsigned numbers A and B are compared by subtracting A � B. The
carry status bit is considered as a borrow bit after a compare instruction in
most commercial computers, so that C � 1 if A � B. Show that the relative
magnitude of A and B can be determined from inspection of status bits C
and Z as specified in the table for Problem 8-26. (See also Table 8-11.)

8-27. Two signed numbers A and B represented in signed-2’s complement form
are compared by subtracting A � B. Status bits S, Z, and V are set or cleared
depending on the result of the operation. (Note that there is a sign reversal

296 CHAPTER EIGHT Central Processing Unit

Chapter08.qxd 2/2/2007 6:35 PM Page 296

EON
PreMedia

CONFIRMING PGS

if an overflow occurs.) Show that the relative magnitude of A and B can be
determined from inspection of the status bits as specified below. (See also
Table 8-11.)

8-28. It is necessary to design a digital circuit with four inputs C, S, Z, and V and
10 outputs, one for each of the branch conditions listed in Probs. 8-26 and
8-27. (The equal and unequal conditions are common to both tables.) Draw
the logic diagram of the circuit using two OR gates, one XOR gate, and five
inverters.

8-29. Consider the two 8-bit numbers A � 01000001 and B � 10000100.
a. Give the decimal equivalent of each number assuming that (1) they are

unsigned, and (2) they are signed.
b. Add the two binary numbers and interpret the sum assuming that the

numbers are (1) unsigned, and (2) signed.
c. Determine the values of the C, Z, S, and V status bits after the addition.
d. List the conditional branch instructions from Table 8-11 that will have a

true condition.
8-30. The program in a computer compares two unsigned numbers A and B by

performing a subtraction A � B and updating the status bits. Let A �
01000001 and B � 10000100.
a. Evaluate the difference and interpret the binary result.
b. Determine the values of status bits C (borrow) and Z.
c. List the conditional branch instructions from Table 8-11 that will have a

true condition.

Table for Problem 8-27

Relation Condition of Status Bits

A � B (S � V) � 0 and Z � 0
A � B (S � V) � 0
A � B (S � V) � 1
A 	 B (S � V) � 1 or Z � 1
A � B Z � 1
A
 B Z � 0

Table for Problem 8-26

Relation Condition of Status Bits

A � B C � 0 and Z � 0
A � B C � 0
A � B C � 1
A 	 B C � 1 or Z � 1
A � B Z � 1
A
 B Z � 0

SECTION 8-8 Reduced Instruction Set Computer (RISC) 297

Chapter08.qxd 2/2/2007 6:35 PM Page 297

EON
PreMedia

CONFIRMING PGS

8-31. The program in a computer compares two signed numbers A and B by per-
forming the subtraction A � B and updating the status bits. Let
A � 01000001 and B � 10000100.
a. Evaluate the difference and interpret the binary result.
b. Determine the value of status bits S, Z, and V.
c. List the conditional branch instructions from Table 8-11 that will have a

true condition.
8-32. The content of the top of a memory stack is 5320. The content of the stack

pointer SP is 3560. A two-word call subroutine instruction is located in
memory at address 1120 followed by the address field of 6720 at location
1121. What are the content of PC, SP, and the top of the stack:
a. Before the call instruction is fetched from memory?
b. After the call instruction is executed?
c. After the return from subroutine?

8-33. What are the basic differences between a branch instruction, a call subrou-
tine instruction, and program interrupt?

8-34. Give five examples of external interrupts and five examples of internal
interrupts. What is the difference between a software interrupt and a sub-
routine call?

8-35. A computer responds to an interrupt request signal by pushing onto the
stack the contents of PC and the current PSW (program status word). It then
reads a new PSW from memory from a location given by an interrupt
address symbolized by IAD. The first address of the service program is
taken from memory at location IAD � 1.
a. List the sequence of microoperations for the interrupt cycle.
b. List the sequence of microoperations for the return from interrupt

instruction.
8-36. Examples of computers with variable instruction formats are IBM 370, VAX

11, and Intel 386. Compare the variable instruction formats of one of these
computers with the fixed-length instruction format used in RISC I.

8-37. Three computers use register windows with the following characteristics.
Determine the window size and the total number of registers in each
computer.

Computer 1 Computer 2 Computer 3

Global registers 10 8 16
Local registers 10 8 16
Common registers 6 8 16
Number of windows 8 4 16

8-38. Give an example of a RISC I instructions that will perform the following
operations.
a. Decrement a register
b. Complement a register
c. Negate a register

298 CHAPTER EIGHT Central Processing Unit

Chapter08.qxd 2/2/2007 6:35 PM Page 298

EON
PreMedia

CONFIRMING PGS

d. Clear a register to 0
e. Divide a signed number by 4
f. No operation

8-39. Write the RISC I instructions in assembly language that will cause a jump
to address 3200 if the Z (zero) status bit is equal to 1.
a. Using immediate mode
b. Using a relative address mode (assume that PC � 3400)

SECTION 8-8 Reduced Instruction Set Computer (RISC) 299

1. Gear, C. W., Computer Organization and Programming, 3rd ed. New York: McGraw-Hill,
1980.

2. Gorsline, G. W., Computer Organization: Hardware/Software, 2nd ed. Englewood
Cliffs, NJ: Prentice Hall, 1986.

3. Gray, N. A. B., Introduction to Computer Systems. Englewood Cliffs, NJ: Prentice
Hall, 1987.

4. Hamacher, V. C., Z. G. Vranesic, and S. G. Zaky, Computer Organization, 3rd ed.
New York: McGraw-Hill, 1990.

5. Hays, J. F., Computer Architecture and Organization, 2nd ed. New York: McGraw-
Hill, 1988.

6. Langholz, G., J. Francioni, and A. Kandel, Elements of Computer Organization.
Englewood Cliffs, NJ: Prentice Hall, 1989.

7. Levy, H. M., and R. H. Eckhouse, Jr., Computer Programming and Architecture: The
VAX-11. Bedford, MA: Digital Press, 1980.

8. Lippiatt, A. G., and G. L. Wright, The Architecture of Small Computer Systems, 2nd ed.
Englewood Cliffs, NJ: Prentice Hall, 1985.

9. Mano, M. M., Computer Engineering: Hardware Design. Englewood Cliffs, NJ:
Prentice Hall, 1988.

10. Murray, W. D., Computer and Digital System Architecture. Englewood Cliffs, NJ:
Prentice Hall, 1990.

11. Patterson, D. A., and J. L. Hennessy, Computer Architecture: A Quantitative Approach.
San Mateo, CA: Morgan Kaufmann Publishers, 1990.

12. Patterson, D. A., and C. H. Sequin, “A VLSI RISC.” IEEE Computer, September
1982, pp. 8–22.

13. Pollard, L. H., Computer Design and Architecture. Englewood Cliffs, NJ: Prentice
Hall, 1990.

14. Rafiquzzaman, M., and R. Chandra, Modern Computer Architecture. St. Paul, MN:
West Publishers, 1988.

15. Siewiorek, D., C. G. Bell, and A. Newell, Computer Structures: Principles and
Examples. New York: McGraw-Hill, 1982.

REFERENCES

Chapter08.qxd 2/2/2007 6:35 PM Page 299

EON
PreMedia

CONFIRMING PGS

16. Stallings, W., Computer Organization and Architecture, 2nd ed. New York: Macmillan,
1989.

17. Tanenbaum, A. S., Structured Computer Organization, 3rd ed. Englewood Cliffs, NJ:
Prentice Hall, 1990.

18. Tomek, I., Introduction to Computer Organization. Rockville, MD: Computer Science
Press, 1981.

19. Toy, W., and B. Zee, Computer Hardware/Software Architecture. Englewood Cliffs,
NJ: Prentice Hall, 1986.

20. Ward, S. A., and R. H. Halstead, Jr., Computation Structures. Cambridge, MA: MIT
Press, 1990.

300 CHAPTER EIGHT Central Processing Unit

Chapter08.qxd 2/2/2007 6:35 PM Page 300

EON
PreMedia

CONFIRMING PGS

IN THIS CHAPTER

9-1 Parallel Processing
9-2 Pipelining
9-3 Arithmetic Pipeline
9-4 Instruction Pipeline
9-5 RISC Pipeline
9-6 Vector Processing
9-7 Array Processors

9-1 Parallel Processing
Parallel processing is a term used to denote a large class of techniques that are
used to provide simultaneous data-processing tasks for the purpose of increas-
ing the computational speed of a computer system. Instead of processing each
instruction sequentially as in a conventional computer, a parallel processing
system is able to perform concurrent data processing to achieve faster execu-
tion time. For example, while an instruction is being executed in the ALU, the
next instruction can be read from memory. The system may have two or more
ALUs and be able to execute two or more instructions at the same time.
Furthermore, the system may have two or more processors operating concur-
rently. The purpose of parallel processing is to speed up the computer process-
ing capability and increase its throughput, that is, the amount of processing that
can be accomplished during a given interval of time. The amount of hardware
increases with parallel processing, and with it, the cost of the system increases.
However, technological developments have reduced hardware costs to the
point where parallel processing techniques are economically feasible.

Parallel processing can be viewed from various levels of complexity. At
the lowest level, we distinguish between parallel and serial operations by the
type of registers used. Shift registers operate in serial fashion one bit at a time,

301

C H A P T E R N I N E

Pipeline and Vector
Processing

throughput

Chapter09.qxd 2/2/2007 6:36 PM Page 301

EON
PreMedia

CONFIRMING PGS

while registers with parallel load operate with all the bits of the word simulta-
neously. Parallel processing at a higher level of complexity can be achieved by
having a multiplicity of functional units that perform identical or different
operations simultaneously. Parallel processing is established by distributing
the data among the multiple functional units. For example, the arithmetic,
logic, and shift operations can be separated into three units and the operands
diverted to each unit under the supervision of a control unit.

Figure 9-1 shows one possible way of separating the execution unit into
eight functional units operating in parallel. The operands in the registers are
applied to one of the units depending on the operation specified by the

302 CHAPTER NINE Pipeline and Vector Processing

multiple functional
units

Adder–subtractor

Integer multiply

Logic unit

Shift unit

Incrementer

Processor
registers

To memory

Floating–point
multiply

Floating–point
add-subtract

Floating–point
divide

Figure 9-1 Processor with multiple functional units.

Chapter09.qxd 2/2/2007 6:36 PM Page 302

EON
PreMedia

CONFIRMING PGS

instruction associated with the operands. The operation performed in each
functional unit is indicated in each block of the diagram. The adder and inte-
ger multiplier perform the arithmetic operations with integer numbers. The
floating-point operations are separated into three circuits operating in parallel.
The logic, shift, and increment operations can be performed concurrently on
different data. All units are independent of each other, so one number can be
shifted while another number is being incremented. A multifunctional organ-
ization is usually associated with a complex control unit to coordinate all the
activities among the various components.

There are a variety of ways that parallel processing can be classified. It
can be considered from the internal organization of the processors, from the
interconnection structure between processors, or from the flow of information
through the system. One classification introduced by M. J. Flynn considers the
organization of a computer system by the number of instructions and data
items that are manipulated simultaneously. The normal operation of a com-
puter is to fetch instructions from memory and execute them in the processor.
The sequence of instructions read from memory constitutes an instruction
stream. The operations performed on the data in the processor constitutes a
data stream. Parallel processing may occur in the instruction stream, in the data
stream, or in both. Flynn’s classification divides computers into four major
groups as follows:

Single instruction stream, single data stream (SISD)
Single instruction stream, multiple data stream (SIMD)
Multiple instruction stream, single data stream (MISD)
Multiple instruction stream, multiple data stream (MIMD)

SISD represents the organization of a single computer containing a con-
trol unit, a processor unit, and a memory unit. Instructions are executed
sequentially and the system may or may not have internal parallel processing
capabilities. Parallel processing in this case may be achieved by means of mul-
tiple functional units or by pipeline processing.

SIMD represents an organization that includes many processing units
under the supervision of a common control unit. All processors receive the
same instruction from the control unit but operate on different items of data.
The shared memory unit must contain multiple modules so that it can com-
municate with all the processors simultaneously. MISD structure is only of
theoretical interest since no practical system has been constructed using this
organization. MIMD organization refers to a computer system capable of pro-
cessing several programs at the same time. Most multiprocessor and multi-
computer systems can be classified in this category.

Flynn’s classification depends on the distinction between the performance
of the control unit and the data-processing unit. It emphasizes the behavioral

SECTION 9-1 Parallel Processing 303

SIMD

MIMD

Chapter09.qxd 2/2/2007 6:36 PM Page 303

EON
PreMedia

CONFIRMING PGS

characteristics of the computer system rather than its operational and structural
interconnections. One type of parallel processing that does not fit Flynn’s clas-
sification is pipelining. The only two categories used from this classification are
SIMD array processors discussed in Sec. 9-7, and MIMD multiprocessors pre-
sented in Chap. 13.

Parallel processing computers are required to meet the demands of large
scale computations in many scientific, engineering, military, medical, artificial
intelligence, and basic research areas. The following are some representative
applications of parallel processing computers: Numerical weather forecasting,
computational aerodynamics, finite-element analysis, remote-sensing applica-
tions, genetic engineering, computer-asseted tomography, and weapon
research and defence.

In this chapter we consider parallel processing under the following main
topics:

1. Pipeline processing
2. Vector processing
3. Array processors

Pipeline processing is an implementation technique where arithmetic suboper-
ations or the phases of a computer instruction cycle overlap in execution.
Vector processing deals with computations involving large vectors and matri-
ces. Array processors perform computations on large arrays of data.

9-2 Pipelining
Pipelining is a technique of decomposing a sequential process into subopera-
tions, with each subprocess being executed in a special dedicated segment that
operates concurrently with all other segments. A pipeline can be visualized as
a collection of processing segments through which binary information flows.
Each segment performs partial processing dictated by the way the task is parti-
tioned. The result obtained from the computation in each segment is trans-
ferred to the next segment in the pipeline. The final result is obtained after the
data have passed through all segments. The name “pipeline” implies a flow of
information analogous to an industrial assembly line. It is characteristic of
pipelines that several computations can be in progress in distinct segments at
the same time. The overlapping of computation is made possible by associat-
ing a register with each segment in the pipeline. The registers provide isolation
between each segment so that each can operate on distinct data simultaneously.

Perhaps the simplest way of viewing the pipeline structure is to imagine
that each segment consists of an input register followed by a combinational
circuit. The register holds the data and the combinational circuit performs the
suboperation in the particular segment. The output of the combinational cir-
cuit in a given segment is applied to the input register of the next segment. A
clock is applied to all registers after enough time has elapsed to perform all

304 CHAPTER NINE Pipeline and Vector Processing

Chapter09.qxd 2/2/2007 6:36 PM Page 304

EON
PreMedia

CONFIRMING PGS

segment activity. In this way the information flows through the pipeline one
step at a time.

The pipeline organization will be demonstrated by means of a simple
example. Suppose that we want to perform the combined multiply and add
operations with a stream of numbers.

Ai * Bi � Ci for i � 1, 2, 3, . . . , 7

Each suboperation is to be implemented in a segment within a pipeline. Each
segment has one or two registers and a combinational circuit as shown in
Fig. 9-2. R1 through R5 are registers that receive new data with every clock
pulse. The multiplier and adder are combinational circuits. The suboperations
performed in each segment of the pipeline are as follows:

R1 ← Ai, R2 ← Bi Input Ai and Bi

R3 ← R1 * R2, R4 ← Ci Multiply and input Ci

R5 ← R3 � R4 Add Ci to product

The five registers are loaded with new data every clock pulse. The effect of
each clock is shown in Table 9-1. The first clock pulse transfers A1 and B1 into

SECTION 9-2 Pipelining 305

an example

R1

R3 R4

R5

Ai

R2

Multiplier

Adder

Bi Ci

Figure 9-2 Example or pipeline processing.

Chapter09.qxd 2/2/2007 6:36 PM Page 305

EON
PreMedia

CONFIRMING PGS

R1 and R2. The second clock pulse transfers the product of R1 and R2 into R3
and C1 into R4. The same clock pulse transfers A2 and B2 into R1 and R2. The
third clock pulse operates on all three segments simultaneously. It places A3
and B3 into R1 and R2, transfers the product of R1 and R2 into R3, transfers
C2 into R4, and places the sum of R3 and R4 into R5. It takes three clock
pulses to fill up the pipe and retrieve the first output from R5. From there on,
each clock produces a new output and moves the data one step down the
pipeline. This happens as long as new input data flow into the system. When
no more input data are available, the clock must continue until the last output
emerges out of the pipeline.

General Considerations
Any operation that can be decomposed into a sequence of suboperations of
about the same complexity can be implemented by a pipeline processor. The
technique is efficient for those applications that need to repeat the same task
many times with different sets of data. The general structure of a four-segment
pipeline is illustrated in Fig. 9-3. The operands pass through all four segments
in a fixed sequence. Each segment consists of a combinational circuit Si that
performs a suboperation over the data stream flowing through the pipe. The
segments are separated by registers Ri that hold the intermediate results
between the stages. Information flows between adjacent stages under the con-
trol of a common clock applied to all the registers simultaneously. We define
a task as the total operation performed going through all the segments in the
pipeline.

The behavior of a pipeline can be illustrated with a space-time diagram.
This is a diagram that shows the segment utilization as a function of time. The
space-time diagram of a four-segment pipeline is demonstrated in Fig. 9-4.
The horizontal axis displays the time in clock cycles and the vertical axis gives

306 CHAPTER NINE Pipeline and Vector Processing

task

space-time
diagram

TABLE 9-1 Content of Registers in Pipeline Example

Clock Segment 1 Segment 2 Segment 3
Pulse

Number R1 R2 R3 R4 R5

1 A1 B1 — — —
2 A2 B2 A1 * B1 C1 —
3 A3 B3 A2 * B2 C2 A1 * B1�C1

4 A4 B4 A3 * B3 C3 A2 * B2�C2

5 A5 B5 A4 * B4 C4 A3 * B3�C3

6 A6 B6 A5 * B5 C5 A4 * B4�C4

7 A7 B7 A6 * B6 C6 A5 * B5�C5

8 — — A7 * B7 C7 A6 * B6�C6

9 — — — — A7 * B7�C7

Chapter09.qxd 2/2/2007 6:36 PM Page 306

EON
PreMedia

CONFIRMING PGS

the segment number. The diagram shows six tasks T1 through T6 executed in
four segments. Initially, task T1 is handled by segment 1. After the first clock,
segment 2 is busy with T1, while segment 1 is busy with task T2. Continuing in
this manner, the first task T1 is completed after the fourth clock cycle. From
then on, the pipe completes a task every clock cycle. No matter how many seg-
ments there are in the system, once the pipeline is full, it takes only one clock
period to obtain an output.

Now consider the case where a k-segment pipeline with a clock cycle
time tp is used to execute n tasks. The first task T1 requires a time equal to ktp
to complete its operation since there are k segments in the pipe. The remain-
ing n � 1 tasks emerge from the pipe at the rate of one task per clock cycle
and they will be completed after a time equal to (n � 1)tp . Therefore, to com-
plete n tasks using a k-segment pipeline requires k � (n � 1) clock cycles. For
example, the diagram of Fig. 9-4 shows four segments and six tasks. The time
required to complete all the operations is 4 � (6 � 1) � 9 clock cycles, as indi-
cated in the diagram.

Next consider a nonpipeline unit that performs the same operation and
takes a time equal to tn to complete each task. The total time required for n
tasks is ntn. The speedup of a pipeline processing over an equivalent non-
pipeline processing is defined by the ratio

S �
ntn

(k � n � 1)tp

SECTION 9-2 Pipelining 307

Input

Clock

S1 R1 S2 R2 S3 R3 S4 R4

Figure 9-3 Four-segment pipeline.

Segment: 1

1

T1 T2 T3 T4 T5 T6

T2 T3 T4 T5 T6

T2 T3 T4 T5 T6

T2 T3 T4 T5 T6

T1

T1

T1

2 3 4 5 6 7 8 9
Clock cycles

2

3

4

Figure 9-4 Space-time diagram for pipeline.

speedup

Chapter09.qxd 2/2/2007 6:36 PM Page 307

EON
PreMedia

CONFIRMING PGS

As the number of tasks increases, n becomes much larger than k � 1, and
k � n — 1 approaches the value of n. Under this condition, the speedup
becomes

S �
tn

tp

If we assume that the time it takes to process a task is the same in the pipeline
and nonpipeline circuits, we will have tn � ktp. Including this assumption, the
speedup reduces to

S �
Ktp

� K
tp

This shows that the theoretical maximum speedup that a pipeline can provide
is k, where k is the number of segments in the pipeline.

To clarify the meaning of the speedup ratio, consider the following
numerical example. Let the time it takes to process a suboperation in each
segment be equal to tp � 20 ns. Assume that the pipeline has k � 4 segments and
executes n � 100 tasks in sequence. The pipeline system will take (k � n� 1) tp �
(4 � 99) � 20 � 2060 ns to complete. Assuming that tn � ktp � 4 � 20 � 80 ns,
a nonpipeline system requires nktp � 100 � 80 � 8000 ns to complete the 100
tasks. The speedup ratio is equal to 8000/2060 � 3.88. As the number of tasks
increases, the speedup will approach 4, which is equal to the number of seg-
ments in the pipeline. If we assume that tn � 60 ns, the speedup becomes
60/20 � 3.

To duplicate the theoretical speed advantage of a pipeline process by
means of multiple functional units, it is necessary to construct k identical units
that will be operating in parallel. The implication is that a k-segment pipeline
processor can be expected to equal the performance of k copies of an equiva-
lent nonpipeline circuit under equal operating conditions. This is illustrated in
Fig. 9-5, where four identical circuits are connected in parallel. Each P circuit
performs the same task of an equivalent pipeline circuit. Instead of operating
with the input data in sequence as in a pipeline, the parallel circuits accept four
input data items simultaneously and perform four tasks at the same rime. As far
as the speed of operation is concerned, this is equivalent to a four segment
pipeline. Note that the four-unit circuit of Fig. 9-5 constitutes a single-instruction
multiple-data (SIMD) organization since the same instruction is used to operate
on multiple data in parallel.

There are various reasons why the pipeline cannot operate at its maxi-
mum theoretical rate. Different segments may take different times to complete
their suboperation. The clock cycle must be chosen to equal the time delay
of the segment with the maximum propagation time. This causes all other

308 CHAPTER NINE Pipeline and Vector Processing

Chapter09.qxd 2/2/2007 6:36 PM Page 308

EON
PreMedia

CONFIRMING PGS

segments to waste time while waiting for the next clock. Moreover, it is not
always correct to assume that a nonpipe circuit has the same time delay as that
of an equivalent pipeline circuit. Many of the intermediate registers will not be
needed in a single-unit circuit, which can usually be constructed entirely as a
combinational circuit. Nevertheless, the pipeline technique provids a faster
operation over a purely serial sequence even though the maximum theoreti-
cal speed is never fully achieved.

There are two areas of computer design where the pipeline organization
is applicable. An arithmetic pipeline divides an arithmetic operation into sub-
operations for execution in the pipeline segments. An instruction pipeline oper-
ates on a stream of instructions by overlapping the fetch, decode, and execute
phases of the instruction cycle. The two types of pipelines are explained in the
following sections.

9-3 Arithmetic Pipeline
Pipeline arithmetic units are usually found in very high speed computers.
They are used to implement floating-point operations, multiplication of fixed-
point numbers, and similar computations encountered in scientific problems.
A pipeline multiplier is essentially an array multiplier as described in Fig. 10-10,
with special adders designed to minimize the carry propagation time through
the partial products. Floating-point operations are easily decomposed into
suboperations as demonstrated in Sec. 10-5. We will now show an example of
a pipeline unit for floating-point addition and subtraction.

The inputs to the floating-point adder pipeline are two normalized
floating-point binary numbers.

X � A � 2a

Y � B � 2b

SECTION 9-3 Arithmetic Pipeline 309

Ii

P1

Ii � 1

P2

Ii � 2

P3

Ii � 3

P4

Figure 9-5 Multiple functional units in parallel.

Chapter09.qxd 2/2/2007 6:36 PM Page 309

EON
PreMedia

CONFIRMING PGS

A and B are two fractions that represent the mantissas and a and b are the
exponents. The floating-point addition and subtraction can be performed in
four segments, as shown in Fig. 9-6. The registers labeled R are placed
between the segments to store intermediate results. The suboperations that are
performed in the four segments are:

1. Compare the exponents.
2. Align the mantissas.
3. Add or subtract the mantissas.
4. Normalize the result.

This follows the procedure outlined in the flowchart of Fig. 10-15 but with
some variations that are used to reduce the execution time of the subopera-
tions. The exponents are compared by subtracting them to determine their dif-
ference. The larger exponent is chosen as the exponent of the result. The
exponent difference determines how many times the mantissa associated with
the smaller exponent must be shifted to the right. This produces an alignment
of the two mantissas. It should be noted that the shift must be designed as a
combinational circuit to reduce the shift time. The two mantissas are added or
subtracted in segment 3. The result is normalized in segment 4. When an over-
flow occurs, the mantissa of the sum or difference is shifted right and the expo-
nent incremented by one. If an underflow occurs, the number of leading zeros
in the mantissa determines the number of left shifts in the mantissa and the
number that must be subtracted from the exponent.

The following numerical example may clarify the suboperations performed
in each segment. For simplicity, we use decimal numbers, although Fig. 9-6 refers
to binary numbers. Consider the two normalized floating-point numbers:

X � 0.9504 � 103

Y � 0.8200 � 102

The two exponents are subtracted in the first segment to obtain 3 � 2 � 1. The
larger exponent 3 is chosen as the exponent of the result. The next segment
shifts the mantissa of Y to the right to obtain

X � 0.9504 � 103

Y � 0.0820 � 103

This aligns the two mantissas under the same exponent. The addition of the
two mantissas in segment 3 produces the sum

Z � 1.0324 � 103

310 CHAPTER NINE Pipeline and Vector Processing

Chapter09.qxd 2/2/2007 6:36 PM Page 310

EON
PreMedia

CONFIRMING PGS

SECTION 9-3 Arithmetic Pipeline 311

Exponents

Difference

Mantissas

Segment 1:

Segment 2:

Segment 3:

Segment 4:

Compare
exponents

by subtraction

Choose exponent

Adjust
exponent

Normalize
result

Add or subtract
mantissas

Align mantissas

a b A B

R

R

R

R R

R

R

R

Figure 9-6 Pipeline for floating-point addition and subtraction.

Chapter09.qxd 2/2/2007 6:36 PM Page 311

EON
PreMedia

CONFIRMING PGS

The sum is adjusted by normalizing the result so that it has a fraction with a
nonzero first digit. This is done by shifting the mantissa once to the right and
incrementing the exponent by one to obtain the normalized sum.

Z � 0.10324 � 104

The comparator, shifter, adder-subtractor, incrementer, and decrementer in
the floating-point pipeline are implemented with combinational circuits.
Suppose that the time delays of the four segments are t1 � 60 ns, t2 � 70 ns,
t3 � 100 ns, t4 � 80 ns, and the interface registers have a delay of tr � 10 ns.
The clock cycle is chosen to be tp � t3 � tr � 110 ns. An equivalent non-
pipeline floatingpoint adder-subtractor will have a delay time tn � t1 � t2 �
t3 � t4 � tr � 320 ns. In this case the pipelined adder has a speedup of
320/110 � 2.9 over the nonpipelined adder.

9-4 Instruction Pipeline
Pipeline processing can occur not only in the data stream but in the instruc-
tion stream as well. An instruction pipeline reads consecutive instructions
from memory while previous instructions are being executed in other seg-
ments. This causes the instruction fetch and execute phases to overlap and
perform simultaneous operations. One possible digression associated with
such a scheme is that an instruction may cause a branch out of sequence. In
that case the pipeline must be emptied and all the instructions that have been
read from memory after the branch instruction must be discarded.

Consider a computer with an instruction fetch unit and an instruction
execution unit designed to provide a two-segment pipeline. The instruction
fetch segment can be implemented by means of a first-in, first-out (FIFO)
buffer. This is a type of unit that forms a queue rather than a stack. Whenever
the execution unit is not using memory, the control increments the program
counter and uses its address value to read consecutive instructions from mem-
ory. The instructions are inserted into the FIFO buffer so that they can be exe-
cuted on a first-in, first-out basis. Thus an instruction stream can be placed in
a queue, waiting for decoding and processing by the execution segment. The
instruction stream queuing mechanism provides an efficient way for reducing
the average access time to memory for reading instructions. Whenever there
is space in the FIFO buffer, the control unit initiates the next instruction fetch
phase. The buffer acts as a queue from which control then extracts the instruc-
tions for the execution unit.

Computers with complex instructions require other phases in addition to
the fetch and execute to process an instruction completely. In the most gen-
eral case, the computer needs to process each instruction with the following
sequence of steps.

312 CHAPTER NINE Pipeline and Vector Processing

instruction cycle

Chapter09.qxd 2/2/2007 6:36 PM Page 312

EON
PreMedia

CONFIRMING PGS

1. Fetch the instruction from memory.
2. Decode the instruction.
3. Calculate the effective address.
4. Fetch the operands from memory.
5. Execute the instruction.
6. Store the result in the proper place.

There are certain difficulties that will prevent the instruction pipeline
from operating at its maximum rate. Different segments may take different
times to operate on the incoming information. Some segments are skipped for
certain operations. For example, a register mode instruction does not need an
effective address calculation. Two or more segments may require memory
access at the same time, causing one segment to wait until another is finished
with the memory. Memory access conflicts are sometimes resolved by using
two memory buses for accessing instructions and data in separate modules. In
this way, an instruction word and a data word can be read simultaneously
from two different modules.

The design of an instruction pipeline will be most efficient if the instruc-
tion cycle is divided into segments of equal duration. The time that each step
takes to fulfill its function depends on the instruction and the way it is executed.

Example: Four-Segment Instruction Pipeline
Assume that the decoding of the instruction can be combined with the calcu-
lation of the effective address into one segment. Assume further that most of
the instructions place the result into a processor register so that the instruction
execution and storing of the result can be combined into one segment. This
reduces the instruction pipeline into four segments.

Figure 9-7 shows how the instruction cycle in the CPU can be processed
with a four-segment pipeline. While an instruction is being executed in seg-
ment 4, the next instruction in sequence is busy fetching an operand from
memory in segment 3. The effective address may be calculated in a separate
arithmetic circuit for the third instruction, and whenever the memory is avail-
able, the fourth and all subsequent instructions can be fetched and placed in
an instruction FIFO. Thus up to four suboperations in the instruction cycle
can overlap and up to four different instructions can be in progress of being
processed at the same time.

Once in a while, an instruction in the sequence may be a program con-
trol type that causes a branch out of normal sequence. In that case the pend-
ing operations in the last two segments are completed and all information
stored in the instruction buffer is deleted. The pipeline then restarts from the
new address stored in the program counter. Similarly, an interrupt request,
when acknowledged, will cause the pipeline to empty and start again from a
new address value.

SECTION 9-4 Instruction Pipeline 313

Chapter09.qxd 2/2/2007 6:36 PM Page 313

EON
PreMedia

CONFIRMING PGS

Figure 9-8 shows the operation of the instruction pipeline. The time in
the horizontal axis is divided into steps of equal duration. The four segments
are represented in the diagram with an abbreviated symbol.

1. FI is the segment that fetches an instruction.
2. DA is the segment that decodes the instruction and calculates the effec-

tive address.
3. FO is the segment that fetches the operand.
4. EX is the segment that executes the instruction.

It is assumed that the processor has separate instruction and data memories so
that the operation in FI and FO can proceed at the same time. In the absence

314 CHAPTER NINE Pipeline and Vector Processing

Segment 1:

Segment 2:

Segment 3:

Segment 4:

Fetch instruction
from memory

Interrupt?

Update PC

Empty pipe

Interrupt
handling

yes

yes

Execute instruction

Fetch operand
from memory

no

no

Branch?

Decode instruction
and calculate

effective address

Figure 9-7 Four-segment CPU pipeline.

Chapter09.qxd 2/2/2007 6:36 PM Page 314

EON
PreMedia

CONFIRMING PGS

of a branch instruction, each segment operates on different instructions. Thus,
in step 4, instruction 1 is being executed in segment EX; the operand for
instruction 2 is being fetched in segment FO; instruction 3 is being decoded in
segment DA; and instruction 4 is being fetched from memory in segment FI.

Assume now that instruction 3 is a branch instruction. As soon as this
instruction is decoded in segment DA in step 4, the transfer from FI to DA of
the other instructions is halted until the branch instruction is executed in
step 6. If the branch is taken, a new instruction is fetched in step 7. If the
branch is not taken, the instruction fetched previously in step 4 can be used.
The pipeline then continues until a new branch instruction is encountered.

Another delay may occur in the pipeline if the EX segment needs to
store the result of the operation in the data memory while the FO segment
needs to fetch an operand. In that case, segment FO must wait until segment
EX has finished its operation.

In general, there are three major difficulties that cause the instruction
pipeline to deviate from its normal operation.

1. Resource conflicts caused by access to memory by two segments at the
same time. Most of these conflicts can be resolved by using separate
instruction and data memories.

2. Data dependency conflicts arise when an instruction depends on the
result of a previous instruction, but this result is not yet available.

3. Branch difficulties arise from branch and other instructions that change
the value of PC.

Data Dependency
A difficulty that may caused a degradation of performance in an instruction
pipeline is due to possible collision of data or address. A collision occurs when

SECTION 9-4 Instruction Pipeline 315

pipeline conflicts

1

Step:

Instruction:

(Branch)

1

FI DA FO EX

FO EX

FO EX

DA

DA

FI

FI

FO EXDAFI– –

– – FO EXDAFI

FO EXDAFI

FO EXDAFI

FI

2 3 4 5 6 7 8 9 10 11 12 13

2

3

4

5

6

7

–

Figure 9-8 Timing of instruction pipeline.

Chapter09.qxd 2/2/2007 6:36 PM Page 315

EON
PreMedia

CONFIRMING PGS

an instruction cannot proceed because previous instructions did not complete
certain operations. A data dependency occurs when an instruction needs data
that are not yet available. For example, an instruction in the FO segment may
need to fetch an operand that is being generated at the same time by the pre-
vious instruction in segment EX. Therefore, the second instruction must wait
for data to become available by the first instruction. Similarly, an address
dependency may occur when an operand address cannot be calculated
because the information needed by the addressing mode is not available. For
example, an instruction with register indirect mode cannot proceed to fetch
the operand if the previous instruction is loading the address into the register.
Therefore, the operand access to memory must be delayed until the required
address is available. Pipelined computers deal with such conflicts between
data dependencies in a variety of ways.

The most straightforward method is to insert hardware interlocks. An inter-
lock is a circuit that detects instructions whose source operands are destina-
tions of instructions farther up in the pipeline. Detection of this situation
causes the instruction whose source is not available to be delayed by enough
clock cycles to resolve the conflict. This approach maintains the program
sequence by using hardware to insert the required delays.

Another technique called operand forwarding uses special hardware to
detect a conflict and then avoid it by routing the data through special paths
between pipeline segments. For example, instead of transferring an ALU
result into a destination register, the hardware checks the destination operand,
and if it is needed as a source in the next instruction, it passes the result
directly into the ALU input, bypassing the register file. This method requires
additional hardware paths through multiplexers as well as the circuit that
detects the conflict.

A procedure employed in some computers is to give the responsibility
for solving data conflicts problems to the compiler that translates the high-
level programming language into a machine language program. The compiler
for such computers is designed to detect a data conflict and reorder the
instructions as necessary to delay the loading of the conflicting data by insert-
ing no-operation instructions. This method is referred to as delayed load. An
example of delayed load is presented in the next section.

Handling of Branch Instructions
One of the major problems in operating an instruction pipeline is the occur-
rence of branch instructions. A branch instruction can be conditional or
unconditional. An unconditional branch always alters the sequential program
flow by loading the program counter with the target address. In a conditional
branch, the control selects the target instruction if the condition is satisfied or
the next sequential instruction if the condition is not satisfied. As mentioned
previously, the branch instruction breaks the normal sequence of the instruc-
tion stream, causing difficulties in the operation of the instruction pipeline.

316 CHAPTER NINE Pipeline and Vector Processing

hardware
interlocks

operand
forwarding

delayed load

Chapter09.qxd 2/2/2007 6:36 PM Page 316

EON
PreMedia

CONFIRMING PGS

Pipelined computers employ various hardware techniques to minimize the
performance degradation caused by instruction branching.

One way of handling a conditional branch is to prefetch the target instruc-
tion in addition to the instruction following the branch. Both are saved until the
branch is executed. If the branch condition is successful, the pipeline continues
from the branch target instruction. An extension of this procedure is to continue
fetching instructions from both places until the branch decision is made. At that
time control chooses the instruction stream of the correct program flow.

Another possibility is the use of a branch target buffer or BTB. The BTB is
an associative memory (see Sec. 12-4) included in the fetch segment of the
pipeline. Each entry in the BTB consists of the address of a previously executed
branch instruction and the target instruction for that branch. It also stores the
next few instructions after the branch target instruction. When the pipeline
decodes a branch instruction, it searches the associative memory BTB for the
address of the instruction. If it is in the BTB, the instruction is available directly
and prefetch continues from the new path. If the instruction is not in the BTB,
the pipeline shifts to a new instruction stream and stores the target instruction
in the BTB. The advantage of this scheme is that branch instructions that have
occurred previously are readily available in the pipeline without interruption.

A variation of the BTB is the loop buffer. This is a small very high speed
register file maintained by the instruction fetch segment of the pipeline. When
a program loop is detected in the program, it is stored in the loop buffer in its
entirety, including all branches. The program loop can be executed directly
without having to access memory until the loop mode is removed by the final
branching out.

Another procedure that some computers use is branch prediction. A
pipeline with branch prediction uses some additional logic to guess the outcome
of a conditional branch instruction before it is executed. The pipeline then
begins prefetching the instruction stream from the predicted path. A correct
prediction eliminates the wasted time caused by branch penalties.

A procedure employed in most RISC processors is the delayed branch.
In this procedure, the compiler detects the branch instructions and rearranges
the machine language code sequence by inserting useful instructions that keep
the pipeline operating without interruptions. An example of delayed branch
is the insertion of a no-operation instruction after a branch instruction. This
causes the computer to fetch the target instruction during the execution of the
no-operation instruction, allowing a continuous flow of the pipeline. An example
of delayed branch is presented in the next section.

9-5 RISC Pipeline
The reduced instruction set computer (RISC) was introduced in Sec. 8-8.
Among the characteristics attributed to RISC is its ability to use an efficient
instruction pipeline. The simplicity of the instruction set can be utilized to

SECTION 9-5 RISC Pipeline 317

prefetch target
instruction

branch target
buffer

loop buffer

branch prediction

delayed branch

Chapter09.qxd 2/2/2007 6:36 PM Page 317

EON
PreMedia

CONFIRMING PGS

implement an instruction pipeline using a small number of suboperations,
with each being executed in one clock cycle. Because of the fixed-length
instruction format, the decoding of the operation can occur at the same time
as the register selection. All data manipulation instructions have register-to-
register operations. Since all operands are in registers, there is no need for cal-
culating an effective address or fetching of operands from memory. Therefore,
the instruction pipeline can be implemented with two or three segments. One
segment fetches the instruction from program memory, and the other segment
executes the instruction in the ALU. A third segment may be used to store the
result of the ALU operation in a destination register.

The data transfer instructions in RISC are limited to load and store
instructions. These instructions use register indirect addressing. They usually
need three or four stages in the pipeline. To prevent conflicts between a mem-
ory access to fetch an instruction and to load or store an operand, most RISC
machines use two separate buses with two memories: one for storing the
instructions and the other for storing the data. The two memories can some-
time operate at the same speed as the CPU clock and are referred to as cache
memories (see Sec. 12-6).

As mentioned in Sec. 8-8, one of the major advantages of RISC is its abil-
ity to execute instructions at the rate of one per clock cycle. It is not possible
to expect that every instruction be fetched from memory and executed in one
clock cycle. What is done, in effect, is to start each instruction with each clock
cycle and to pipeline the processor to achieve the goal of single-cycle instruc-
tion execution. The advantage of RISC over CISC (complex instruction set
computer) is that RISC can achieve pipeline segments, requiring just one
clock cycle, while CISC uses many segments in its pipeline, with the longest
segment requiring two or more clock cycles.

Another characteristic of RISC is the support given by the compiler that
translates the high-level language program into machine language program.
Instead of designing hardware to handle the difficulties associated with data
conflicts and branch penalties, RISC processors rely on the efficiency of the
compiler to detect and minimize the delays encountered with these problems.
The following examples show how a compiler can optimize the machine lan-
guage program to compensate for pipeline conflicts.

Example: Three-Segment Instruction Pipeline
A typical set of instructions for a RISC processor are listed in Table 8-12. We
see from this table that there are three types of instructions. The data manip-
ulation instructions operate on data in processor registers. The data transfer
instructions are load and store instructions that use an effective address
obtained from the addition of the contents of two registers or a register and a
displacement constant provided in the instruction. The program control
instructions use register values and a constant to evaluate the branch address,
which is transferred to a register or the program counter PC.

318 CHAPTER NINE Pipeline and Vector Processing

single-cycle
instruction
execution

compiler support

Chapter09.qxd 2/2/2007 6:36 PM Page 318

EON
PreMedia

CONFIRMING PGS

Now consider the hardware operation for such a computer. The control
section fetches the instruction from program memory into an instruction reg-
ister. The instruction is decoded at the same time that the registers needed for
the execution of the instruction are selected. The processor unit consists of a
number of registers and an arithmetic logic unit (ALU) that performs the nec-
essary arithmetic, logic, and shift operations. A data memory is used to load
or store the data from a selected register in the register file. The instruction
cycle can be divided into three suboperations and implemented in three seg-
ments:

I: Instruction fetch
A: ALU operation
E: Execute instruction

The I segment fetches the instruction from program memory. The instruction
is decoded and an ALU operation is performed in the A segment. The ALU
is used for three different functions, depending on the decoded instruction. It
performs an operation for a data manipulation instruction, it evaluates the
effective address for a load or store instruction, or it calculates the branch
address for a program control instruction. The E segment directs the output of
the ALU to one of three destinations, depending on the decoded instruction.
It transfers the result of the ALU operation into a destination register in the
register file, it transfers the effective address to a data memory for loading or
storing, or it transfers the branch address to the program counter.

Delayed Load
Consider now the operation of the following four instructions:

1. LOAD: R 1 ← M [address 1]
2. LOAD: R 2 ← M [address 2]
3. ADD: R 3 ← R1 � R2
4. STORE: M [address 3] ← R3

If the three-segment pipeline proceeds without interruptions, there will be a
data conflict in instruction 3 because the operand in R2 is not yet available in
the A segment. This can be seen from the timing of the pipeline shown in
Fig. 9-9(a). The E segment in clock cycle 4 is in a process of placing the mem-
ory data into R2. The A segment in clock cycle 4 is using the data from R2,
but the value in R2 will not be the correct value since it has not yet been trans-
ferred from memory. It is up to the compiler to make sure that the instruction
following the load instruction uses the data fetched from memory. If the com-
piler cannot find a useful instruction to put after the load, it inserts a no-op
(no-operation) instruction. This is a type of instruction that is fetched from

SECTION 9-5 RISC Pipeline 319

Chapter09.qxd 2/2/2007 6:36 PM Page 319

EON
PreMedia

CONFIRMING PGS

memory but has no operation, thus wasting a clock cycle. This concept of
delaying the use of the data loaded from memory is referred to as delayed load.

Figure 9-9(b) shows the same program with a no-op instruction inserted
after the load to R2 instruction. The data is loaded into R2 in clock cycle 4.
The add instruction uses the value of R2 in step 5. Thus the no-op instruction
is used to advance one clock cycle in order to compensate for the data conflict
in the pipeline. (Note that no operation is performed in segment A during
clock cycle 4 or segment E during clock cycle 5.) The advantage of the delayed
load approach is that the data dependency is taken care of by the compiler
rather than the hardware. This results in a simpler hardware segment since the
segment does not have to check if the content of the register being accessed is
currently valid or not.

Delayed Branch
It was shown in Fig. 9-8 that a branch instruction delays the pipeline opera-
tion until the instruction at the branch address is fetched. Several techniques
for reducing branch penalties were discussed in the preceding section. The
method used in most RISC processors is to rely on the compiler to redefine
the branches so that they take effect at the proper time in the pipeline. This
method is referred to as delayed branch.

320 CHAPTER NINE Pipeline and Vector Processing

Clock cycle:

2. Load R2

1. Load R1

1 2 3

(b) Pipeline timing with delayed load

I A E

I A E

I A E

I A E

I A E

4 5 6 7

3. No-operation

4. Add R1 � R2

5. Store R3

(a) Pipeline timing with data conflict

Clock cycles:

2. Load R2

1. Load R1

1 2 3

I A E

I A E

I A E

I A E

4 5 6

3. Add R1 � R2

4. Store R3

Figure 9-9 Three-segment pipeline timing.

Chapter09.qxd 2/2/2007 6:36 PM Page 320

EON
PreMedia

CONFIRMING PGS

The compiler for a processor that uses delayed branches is designed to
analyze the instructions before and after the branch and rearrange the pro-
gram sequence by inserting useful instructions in the delay steps. For example,
the compiler can determine that the program dependencies allow one or more
instructions preceding the branch to be moved into the delay steps after the
branch. These instructions are then fetched from memory and executed
through the pipeline while the branch instruction is being executed in other
segments. The effect is the same as if the instructions were executed in their
original order, except that the branch delay is removed. It is up to the com-
piler to find useful instructions to put after the branch instruction. Failing that,
the compiler can insert no-op instructions.

An example of delayed branch is shown in Fig. 9-10. The program for
this example consists of five instructions:

Load from memory to R1
Increment R2
Add R3 to R4
Subtract R5 from R6
Branch to address X

In Fig. 9-10(a) the compiler inserts two no-op instructions after the branch.
The branch address X is transferred to PC in clock cycle 7. The fetching of the
instruction at X is delayed by two clock cycles by the no-op instructions. The
instruction at X starts the fetch phase at clock cycle 8 after the program counter
PC has been updated.

The program in Fig. 9-10(b) is rearranged by placing the add and sub-
tract instructions after the branch instruction instead of before as in the origi-
nal program. Inspection of the pipeline timing shows that PC is updated to the
value of X in clock cycle 5, but the add and subtract instructions are fetched
from memory and executed in the proper sequence. In other words, if the load
instruction is at address 101 and X is equal to 350, the branch instruction is
fetched from address 103. The add instruction is fetched from address 104 and
executed in clock cycle 6. The subtract instruction is fetched from address 105
and executed in clock cycle 7. Since the value of X is transferred to PC with
clock cycle 5 in the E segment, the instruction fetched from memory at clock
cycle 6 is from address 350, which is the instruction at the branch address.

9-6 Vector Processing
There is a class of computational problems that are beyond the capabilities of
a conventional computer. These problems are characterized by the fact that
they require a vast number of computations that will take a conventional
computer days or even weeks to complete. In many science and engineering

SECTION 9-6 Vector Processing 321

Chapter09.qxd 2/2/2007 6:36 PM Page 321

EON
PreMedia

CONFIRMING PGS

applications, the problems can be formulated in terms of vectors and matri-
ces that lend themselves to vector processing.

Computers with vector processing capabilities are in demand in special-
ized applications. The following are representative application areas where
vector processing is of the utmost importance.

Long-range weather forecasting
Petroleum explorations
Seismic data analysis
Medical diagnosis
Aerodynamics and space flight simulations

322 CHAPTER NINE Pipeline and Vector Processing

Clock cycles:

2. Increment

1. Load

1 2 3

(a) Using no-operation instructions

I A E

I A E

I A E

I A E

I A E

I A E

I A E

I A E

4 5 6 7 8 9 10

3. Add

4. Subtract

5. Branch to X

6. No-operation

7. No-operation

8. Instruction in X

(b) Rearranging the instructions

Clock cycles:

2. Increment

1. Load

1 2 3

I A E

I A E

I A E

I A E

I A E

I A E

4 5 6 7 8

3. Branch to X

4. Add

5. Subtract

6. Instruction in X

Figure 9-10 Example of delayed branch.

applications

Chapter09.qxd 2/2/2007 6:36 PM Page 322

EON
PreMedia

CONFIRMING PGS

Artificial intelligence and expert systems
Mapping the human genome
Image processing

Without sophisticated computers, many of the required computations cannot
be completed within a reasonable amount of time. To achieve the required
level of high performance it is necessary to utilize the fastest and most reliable
hardware and apply innovative procedures from vector and parallel process-
ing techniques.

Vector Operations
Many scientific problems require arithmetic operations on large arrays of
numbers. These numbers are usually formulated as vectors and matrices of
floating-point numbers. A vector is an ordered set of a one-dimensional array of
data items. A vector V of length n is represented as a row vector by V � [V1 V2
V3 . . . Vn]. It may be represented as a column vector if the data items are
listed in a column. A conventional sequential computer is capable of process-
ing operands one at a time. Consequently, operations on vectors must be bro-
ken down into single computations with subscripted variables. The element Vi
of vector V is written as V (I) and the index I refers to a memory address or
register where the number is stored. To examine the difference between a
conventional scalar processor and a vector processor, consider the following
Fortran DO loop:

DO 20 I � 1, 100
20 C(I)� B(I) � A(I)

This is a program for adding two vectors A and B of length 100 to produce a
vector C. This is implemented in machine language by the following sequence
of operations.

Initialize I � 0
20 Read A(I)

Read B(I)
Store C(I) � A(I) � B(I)
Increment I � I � 1
If I � 100 go to 20
Continue

This constitutes a program loop that reads a pair of operands from arrays A
and B and performs a floating-point addition. The loop control variable is then
updated and the steps repeat 100 times.

A computer capable of vector processing eliminates the overhead associ-
ated with the time it takes to fetch and execute the instructions in the program

SECTION 9-6 Vector Processing 323

Chapter09.qxd 2/2/2007 6:36 PM Page 323

EON
PreMedia

CONFIRMING PGS

loop. It allows operations to be specified with a single vector instruction of the
form

C(1:100) � A(1:100) � B(1:100)

The vector instruction includes the initial address of the operands, the length
of the vectors, and the operation to be performed, all in one composite instruc-
tion. The addition is done with a pipelined floating-point adder similar to the
one shown in Fig. 9-6.

A possible instruction format for a vector instruction is shown in -
Fig. 9-11. This is essentially a three-address instruction with three fields speci-
fying the base address of the operands and an additional field that gives the
length of the data items in the vectors. This assumes that the vector operands
reside in memory. It is also possible to design the processor with a large num-
ber of registers and store all operands in registers prior to the addition opera-
tion. In that case the base address and length in the vector instruction specify
a group of CPU registers.

Matrix Multiplication
Matrix multiplication is one of the most computational intensive operations
performed in computers with vector processors. The multiplication of two
n � n matrices consists of n2 inner products or n3 multiply–add operations. An
n � m matrix of numbers has n rows and m columns and may be considered
as constituting a set of n row vectors or a set of m column vectors. Consider,
for example, the multiplication of two 3 � 3 matrices A and B.

324 CHAPTER NINE Pipeline and Vector Processing

Operation
code

Base address
source 1

Base address
source 2

Base address
destination

Vector
length

Figure 9-11 Instruction format for vector processor.

a a a
a a a
a a a

b b b
b b b

11 12 13

21 22 23

31 32 33

11 12 13

21 22

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
× 223

31 32 33

11 12 13

21 22 23

31 32 33b b b

c c c
c c c
c c c

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
=

⎡

⎣

⎢
⎢ ⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

c a bij ik
k

kj = ×
=
∑

1

3

The product matrix C is a 3 � 3 matrix whose elements are related to the ele-
ments of A and B by the inner product:

For example, the number in the first row and first column of matrix C is cal-
culated by letting i � 1, j � 1, to obtain

c11 � a11b11 � a12 b21 � a13 b31

Chapter09.qxd 2/2/2007 6:36 PM Page 324

EON
PreMedia

CONFIRMING PGS

This requires three multiplications and (after initializing c11 to 0) three addi-
tions. The total number of multiplications or additions required to compute the
matrix product is 9 � 3 � 27. If we consider the linked multiply–add operation
c � a � b as a cumulative operation, the product of two n � n matrices requires
n3 multiply–add operations. The computation consists of n2 inner products,
with each inner product requiring n multiply–add operations, assuming that c is
initialized to zero before computing each element in the product matrix.

In general, the inner product consists of the sum of k product terms of
the form

C � A1 B1 � A2 B2 � A3 B3 � A4 B4 � . . . � Ak Bk

In a typical application k may be equal to 100 or even 1000. The inner prod-
uct calculation on a pipeline vector processor is shown in Fig. 9-12. The values
of A and B are either in memory or in processor registers. The floating-point
multiplier pipeline and the floating-point adder pipeline are assumed to have
four segments each. All segment registers in the multiplier and adder are ini-
tialized to 0. Therefore, the output of the adder is 0 for the first eight cycles
until both pipes are full. Ai and Bi pairs are brought in and multiplied at a rate
of one pair per cycle. After the first four cycles, the products begin to be added
to the output of the adder. During the next four cycles 0 is added to the prod-
ucts entering the adder pipeline. At the end of the eighth cycle, the first four
products A1 Bl through A4 B4 are in the four adder segments, and the next four
products, A5 B5 through A8 B8, are in the multiplier segments. At the beginning
of the ninth cycle, the output of the adder is A1 B1 and the output of the mul-
tiplier is A5 B5. Thus the ninth cycle starts the addition A1 B1 � A5 B5 in the
adder pipeline. The tenth cycle starts the addition A2 B2 � A6 B6, and so on.
This pattern breaks down the summation into four sections as follows:

C � A1B1 � A5B5 � A9B9 � A13B13 � . . .

� A2B2 � A6B6 � A10B10 � A14B14 � . . .

� A3B3 � A7B7 � A11B11 � A15B15 � . . .

� A4B4 � A8B8 � A12B12 � A16B16 � . . .

SECTION 9-6 Vector Processing 325

Source
A

Source
B

Multiplier
pipeline

Adder
pipeline

Figure 9-12 Pipeline for calculating an inner product.

Chapter09.qxd 2/2/2007 6:36 PM Page 325

EON
PreMedia

CONFIRMING PGS

When there are no more product terms to be added, the system inserts four
zeros into the multiplier pipeline. The adder pipeline will then have one par-
tial product in each of its four segments, corresponding to the four sums listed
in the four rows in the above equation. The four partial sums are then added
to form the final sum.

Memory Interleaving
Pipeline and vector processors often require simultaneous access to memory
from two or more sources. An instruction pipeline may require the fetching of
an instruction and an operand at the same time from two different segments.
Similarly, an arithmetic pipeline usually requires two or more operands to
enter the pipeline at the same time. Instead of using two memory buses for
simultaneous access, the memory can be partitioned into a number of mod-
ules connected to a common memory address and data buses. A memory
module is a memory array together with its own address and data registers.
Figure 9-13 shows a memory unit with four modules. Each memory array has
its own address register AR and data register DR. The address registers receive
information from a common address bus and the data registers communicate
with a bidirectional data bus. The two least significant bits of the address can
be used to distinguish between the four modules. The modular system permits
one module to initiate a memory access while other modules are in the
process of reading or writing a word and each module can honor a memory
request independent of the state of the other modules.

326 CHAPTER NINE Pipeline and Vector Processing

Figure 9-13 Multiple module memory organization.

Address bus

Data bus

Memory
array

AR

DR

Memory
array

AR

DR

Memory
array

AR

DR

Memory
array

AR

DR

Chapter09.qxd 2/2/2007 6:36 PM Page 326

EON
PreMedia

CONFIRMING PGS

The advantage of a modular memory is that it allows the use of a tech-
nique called interleaving. In an interleaved memory, different sets of addresses
are assigned to different memory modules. For example, in a two-module
memory system, the even addresses may be in one module and the odd
addresses in the other. When the number of modules is a power of 2, the least
significant bits of the address select a memory module and the remaining bits
designate the specific location to be accessed within the selected module.

A modular memory is useful in systems with pipeline and vector pro-
cessing. A vector processor that uses an n-way interleaved memory can fetch
n operands from n different modules. By staggering the memory access, the
effective memory cycle time can be reduced by a factor close to the number
of modules. A CPU with instruction pipeline can take advantage of multiple
memory modules so that each segment in the pipeline can access memory
independent of memory access from other segments.

Superscalar Processors
A superscalar processor architecture has a form of parallelism on a single
chip allowing the system as a whole to run much faster than it would other-
wise be able to at a given clock speed. A superscalar architecture fetches, exe-
cutes, and returns results from more than one instruction during a single
pipeline stage. A scalar processor processes one data item at a time. In a vec-
tor processor, by contrast, a single instruction operates simultaneously on
multiple data items. The difference is analogous to the difference between
scalar and vector arithmetic. A superscalar processor is sort of a mixture of
the two. Each instruction processes one data item, but there are multiple pro-
cessing units so that multiple instructions can be processing separate data
items at the same time.

A superscalar processor normally has an execution rate in excess of one
instruction per machine cycle. But just processing multiple instructions at the
same time does not make an architecture superscalar. Simple pipelining,
where a processor may be loading an instruction while doing arithmetic for
the previous one and storing the results from the one before that (thus exe-
cuting three instructions at the same time) is not superscalar processing. In a
superscalar processor, there are several functional units of the same type,
along with additional circuitry to dispatch instructions to the units. For
instance, most superscalar designs include more than one arithmetic and logic
unit. The dispatcher reads instructions from memory and decides which ones
can be run in parallel, dispatching them to the two units. Seymour Cray’s
CDC 6600 from 1965 is often mentioned as the first superscalar design. The
Intel i960CA (1988) and the AMD 29000-series 29050 (1990) microprocessors
were the first commercial single-chip superscalar microprocessors. The
RS6000 from IBM was released in 1990 and was the world’s first superscalar
RISC microprocessor. Intel followed in 1993 with the Pentium, which with its
two ALUs brought the x86 world into the superscalar era.

SECTION 9-6 Vector Processing 327

Chapter09.qxd 2/2/2007 6:36 PM Page 327

EON
PreMedia

CONFIRMING PGS

Supercomputers
A commercial computer with vector instructions and pipelined floating-point
arithmetic operations is referred to as a supercomputer. Supercomputers are
very powerful, high-performance machines used mostly for scientific compu-
tations. To speed up the operation, the components are packed tightly together
to minimize the distance that the electronic signals have to travel.
Supercomputers also use special techniques for removing the heat from cir-
cuits to prevent them from burning up because of their close proximity.

The instruction set of supercomputers contains the standard data trans-
fer, data manipulation, and program control instructions of conventional
computers. This is augmented by instructions that process vectors and
combinations of scalars and vectors. A supercomputer is a computer system
best known for its high computational speed, fast and large memory systems,
and the extensive use of parallel processing. It is equipped with multiple func-
tional units and each unit has its own pipeline configuration. Although the
supercomputer is capable of general-purpose applications found in all other
computers, it is specifically optimized for the type of numerical calculations
involving vectors and matrices of floating-point numbers.

Supercomputers are not suitable for normal everyday processing of a
typical computer installation. They are limited in their use to a number of
scientific applications, such as numerical weather forecasting, seismic wave
analysis, and space research. They have limited use and limited market because
of their high price.

A measure used to evaluate computers in their ability to perform a given
number of floating-point operations per second is referred to as flops. The term
megaflops is used to denote million flops and gigaflops to denote billion flops. A
typical supercomputer has a basic cycle time of 4 to 20 ns. If the processor can
calculate a floating-point operation through a pipeline each cycle time, it will
have the ability to perform 50 to 250 megaflops. This rate would be sustained
from the time the first answer is produced and does not include the initial
setup time of the pipeline.

The first supercomputer developed in 1976 is the Cray-1 supercomputer.
It uses vector processing with 12 distinct functional units in parallel. Each
functional unit is segmented to process the incoming data through a pipeline.
All the functional units can operate concurrently with operands stored in the
large number of registers (over 150) in the CPU. A floating-point operation can
be performed on two sets of 64-bit operands during one clock cycle of 12.5 ns.
This gives a rate of 80 megaflops during the time that the data are processed
through the pipeline. It has a memory capacity of 4 million 64-bit words. The
memory is divided into 16 banks, with each bank having a 50-ns access time.
This means that when all 16 banks are accessed simultaneously, the memory
transfer rate is 320 million words per second. Cray research extended its
supercomputer to a multiprocessor configuration called Cray X-MP and Cray
Y-MP. The new Cray-2 supercomputer is 12 times more powerful than the
Cray-1 in vector processing mode.

328 CHAPTER NINE Pipeline and Vector Processing

Chapter09.qxd 2/2/2007 6:36 PM Page 328

EON
PreMedia

CONFIRMING PGS

Another early model supercomputer is the Fujitsu VP-200. It has a scalar
processor and a vector processor that can operate concurrently. Like the Cray
supercomputers, a large number of registers and multiple functional units are
used to enable register-to-register vector operations. There are four execution
pipelines in the vector processor, and when operating simultaneously, they can
achieve up to 300 megaflops. The main memory has 32 million words con-
nected to the vector registers through load and store pipelines. The VP-200
has 83 vector instructions and 195 scalar instructions. The newer VP-2600
uses a clock cycle of 3.2 ns and claims a peak performance of 5 gigaflops.

9-7 Array Processors
An array processor is a processor that performs computations on large arrays
of data. The term is used to refer to two different types of processors. An
attached array processor is an auxiliary processor attached to a general-purpose
computer. It is intended to improve the performance of the host computer in
specific numerical computation tasks. An SIMD array processor is a processor
that has a single-instruction multiple-data organization. It manipulates vector
instructions by means of multiple functional units responding to a common
instruction. Although both types of array processors manipulate vectors, their
internal organization is different.

Attached Array Processor
An attached array processor is designed as a peripheral for a conventional
host computer, and its purpose is to enhance the performance of the computer
by providing vector processing for complex scientific applications. It achieves
high performance by means of parallel processing with multiple functional
units. It includes an arithmetic unit containing one or more pipelined float-
ingpoint adders and multipliers. The array processor can be programmed by
the user to accommodate a variety of complex arithmetic problems.

Figure 9-14 shows the interconnection of an attached array processor to
a host computer. The host computer is a general-purpose commercial computer

SECTION 9-7 Array Processors 329

General-purpose
computer

Input–output
interface

Attached array
processor

High-speed memory-to-

memory bus
Local memoryMain memory

Figure 9-14 Attached array processor with host computer.

Chapter09.qxd 2/2/2007 6:36 PM Page 329

EON
PreMedia

CONFIRMING PGS

and the attached processor is a back-end machine driven by the host com-
puter. The array processor is connected through an input–output controller to
the computer and the computer treats it like an external interface. The data
for the attached processor are transferred from main memory to a local mem-
ory through a high-speed bus. The general-purpose computer without the
attached processor serves the users that need conventional data processing.
The system with the attached processor satisfies the needs for complex arith-
metic applications.

Some manufacturers of attached array processors offer a model that can be
connected to a variety of different host computers. For example, when attached
to a VAX 11 computer, the FSP-164/MAX from Floating-Point Systems
increases the computing power of the VAX to 100 megaflops. The objective of
the attached array processor is to provide vector manipulation capabilities to a
conventional computer at a fraction of the cost of supercomputers.

SIMD Array Processor
An SIMD array processor is a computer with multiple processing units oper-
ating in parallel. The processing units are synchronized to perform the same
operation under the control of a common control unit, thus providing a single
instruction stream, multiple data stream (SIMD) organization. A general block
diagram of an array processor is shown in Fig. 9-15. It contains a set of
identical processing elements (PEs), each having a local memory M. Each
processor element includes an ALU, a floating-point arithmetic unit, and

330 CHAPTER NINE Pipeline and Vector Processing

Master control
unit

PE1 M1

PE2 M2

PE3 M3

PEn Mn

Main memory

Chapter09.qxd 2/2/2007 6:36 PM Page 330

EON
PreMedia

CONFIRMING PGS

working registers. The master control unit controls the operations in the
processor elements. The main memory is used for storage of the program. The
function of the master control unit is to decode the instructions and determine
how the instruction is to be executed. Scalar and program control instructions
are directly executed within the master control unit. Vector instructions are
broadcast to all PEs simultaneously. Each PE uses operands stored in its local
memory. Vector operands are distributed to the local memories prior to the
parallel execution of the instruction.

Consider, for example, the vector addition C � A � B. The master con-
trol unit first stores the i th components ai and bi of A and B in local memory
Mi for i � 1, 2, 3, . . . , n. It then broadcasts the floating-point add instruction
ci � ai � bi to all PEs, causing the addition to take place simultaneously. The
components of ci are stored in fixed locations in each local memory. This pro-
duces the desired vector sum in one add cycle.

Masking schemes are used to control the status of each PE during the
execution of vector instructions. Each PE has a flag that is set when the PE is
active and reset when the PE is inactive. This ensures that only those PEs that
need to participate are active during the execution of the instruction. For
example, suppose that the array processor contains a set of 64 PEs. If a vector
length of less than 64 data items is to be processed, the control unit selects the
proper number of PEs to be active. Vectors of greater length than 64 must be
divided into 64-word portions by the control unit.

The best known SIMD array processor is the ILLIAC IV computer
developed at the University of Illinois and manufactured by the Burroughs
Corp. This computer is no longer in operation. SIMD processors are highly
specialized computers. They are suited primarily for numerical problems that
can be expressed in vector or matrix form. However, they are not very effi-
cient in other types of computations or in dealing with conventional data-
processing programs.

SECTION 9-7 Array Processors 331

PROBLEMS

9-1. In certain scientific computations it is necessary to perform the arithmetic
operation (Ai � Bi)(Ci � Di) with a stream of numbers. Specify a pipeline
configuration to carry out this task. List the contents of all registers in the
pipeline for i � 1 through 6.

9-2. Draw a space-time diagram for a six-segment pipeline showing the time it
takes to process eight tasks.

9-3. Determine the number of clock cycles that it takes to process 200 tasks in a
six-segment pipeline.

9-4. A nonpipeline system takes 50 ns to process a task. The same task can be
processed in a six-segment pipeline with a clock cycle of 10 ns. Determine

Chapter09.qxd 2/2/2007 6:36 PM Page 331

EON
PreMedia

CONFIRMING PGS

the speedup ratio of the pipeline for 100 tasks. What is the maximum
speedup that can be achieved?

9-5. The pipeline of Fig. 9-2 has the following propagation times: 40 ns for the
operands to be read from memory into registers R1 and R2, 45 ns for the
signal to propagate through the multiplier, 5 ns for the transfer into R3, and
15 ns to add the two numbers into R5.
a. What is the minimum clock cycle time that can be used?
b. A nonpipeline system can perform the same operation by removing R3

and R4. How long will it take to multiply and add the operands without
using the pipeline?

c. Calculate the speedup of the pipeline for 10 tasks and again for 100 tasks.
d. What is the maximum speedup that can be achieved?

9-6. It is necessary to design a pipeline for a fixed-point multiplier that multiplies
two 8-bit binary integers. Each segment consists of a number of AND gates
and a binary adder similar to an array multiplier as shown in Fig. 10-10.
a. How many AND gates are there in each segment, and what size of adder

is needed?
b. How many segments are there in the pipeline?
c. If the propagation delay in each segment is 30 ns, what is the average time

that it takes to multiply two fixed-point numbers in the pipeline?
9-7. The time delay of the four segments in the pipeline of Fig. 9-6 are as follows:

t1 � 50 ns, t2 � 30 ns, t3 � 95 ns, and u � 45 ns. The interface registers
delay time t4 � 5 ns.
a. How long would it take to add 100 pairs of numbers in the pipeline?
b. How can we reduce the total time to about one-half of the time calculated

in part (a)?
9-8. How would you use the floating-point pipeline adder of Fig. 9-6 to add 100

floating-point numbers X1 � X2 � X3 � . . . � X100?
9-9. Formulate a six-segment instruction pipeline for a computer. Specify the

operations to be performed in each segment.
9-10. Explain four possible hardware schemes that can be used in an instruction

pipeline in order to minimize the performance degradation caused by
instruction branching.

9-11. Consider the four instructions in the following program. Suppose that the
first instruction starts from step 1 in the pipeline used in Fig. 9-8. Specify
what operations are performed in the four segments during step 4.

Load R1 ← M[312]
ADD R2 ← R2 � M[313]
INC R3 ← R3 � 1
STORE M[314] ← R3

9-12. Give an example of a program that will cause data conflict in the three-
segment pipeline of Sec. 9-5.

9-13. Give an example that uses delayed load with the three-segment pipeline of
Sec. 9-5.

332 CHAPTER NINE Pipeline and Vector Processing

Chapter09.qxd 2/2/2007 6:36 PM Page 332

EON
PreMedia

CONFIRMING PGS

9-14. Give an example of a program that will cause a branch penalty in the three-
segment pipeline of Sec. 9-5.

9-15. Give an example that uses delayed branch with the three-segment pipeline
of Sec. 9-5.

9-16. Consider the multiplication of two 40 � 40 matrices using a vector
processor.
a. How many product terms are there in each inner product, and how many

inner products must be evaluated?
b. How many multiply–add operations are needed to calculate the product

matrix?
9-17. How many clock cycles does it take to process an inner product in the

pipeline of Fig. 9-12 when used to evaluate the product of two 60 � 60
matrices? How many inner products are there, and how many clock cycles
does it take to evaluate the product matrix?

9-18. Assign addresses to an array of data of 1024 words to be stored in the mem-
ory described in Fig. 9-13.

9-19. A weather forecasting computation requires 250 billion floating-point oper-
ations. The problem is processed in a supercomputer that can perform 100
megaflops. How long will it take to do these calculations?

9-20. Consider a computer with four floating-point pipeline processors. Suppose
that each processor uses a cycle time of 40 ns. How long will it take to per-
form 400 floating-point operations? Is there a difference if the same 400
operations are carried out using a single pipeline processor with a cycle time
of 10 ns?

SECTION 9-7 Array Processors 333

REFERENCES

1. Dasgupta, S., Computer Architecture: A Modern Synthesis, Vol. 2. New York: John
Wiley, 1989.

2. DeCegama, A. L., Parallel Processing Architecture and VLSI Hardware. Englewood
Cliffs, NJ: Prentice Hall, 1989.

3. Gibson, G. A., Computer Systems Concepts and Design. Englewood Cliffs, NJ: Prentice
Hall, 1991.

4. Hays, J. F., Computer Architecture and Organization, 2nd ed. New York: McGraw-Hill,
1988.

5. Hwang, K., and F. A. Briggs, Computer Architecture and Parallel Processing. New York:
McGraw-Hill, 1984.

6. Kain, R., Computer Architecture: Software and Hardware. Vol. 2. Englewood Cliffs,
NJ: Prentice Hall, 1989.

7. Lee, J. K. F., and A. J. Smith, “Branch Prediction Strategies and Branch Target
Buffer Design.” Computer, Vol. 17, No. 1 (January 1984), pp. 6–22.

Chapter09.qxd 2/2/2007 6:36 PM Page 333

EON
PreMedia

CONFIRMING PGS

8. Lilja, D. J., “Reducing the Branch Penalties in Pipeline Processors.” Computer,
Vol. 21, No. 7 (July 1988), pp. 47–55.

9. Patterson, D. A., and J. L. Hennessy, Computer Architecture: A Quantitative Approach.
San Mateo, CA: Morgan Kaufmann Publishers, 1990.

10. Pollard, L. H., Computer Design and Architecture. Englewood Cliffs, NJ: Prentice
Hall, 1990.

11. Stone, H. S., High-Performance Computer Architecture, 2nd ed. Reading, MA:
Addison-Wesley, 1990.

12. Tabak, D., Multiprocessors. Englewood Cliffs, NJ: Prentice Hall, 1990.

334 CHAPTER NINE Pipeline and Vector Processing

Chapter09.qxd 2/2/2007 6:36 PM Page 334

EON
PreMedia

CONFIRMING PGS

IN THIS CHAPTER

10-1 Introduction
10-2 Addition and Subtraction
10-3 Multiplication Algorithms
10-4 Division Algorithms
10-5 Floating-Point Arithmetic Operations
10-6 Decimal Arithmetic Unit
10-7 Decimal Arithmetic Operations

10-1 Introduction
Arithmetic instructions in digital computers manipulate data to produce
results necessary for the solution of computational problems. These instruc-
tions perform arithmetic calculations and are responsible for the bulk of activ-
ity involved in processing data in a computer. The four basic arithmetic
operations are addition, subtraction, multiplication, and division. From these
four basic operations, it is possible to formulate other arithmetic functions and
solve scientific problems by means of numerical analysis methods.

An arithmetic processor is the part of a processor unit that executes
arithmetic operations. The data type assumed to reside in processor registers
during the execution of an arithmetic instruction is specified in the definition
of the instruction. An arithmetic instruction may specify binary or decimal
data, and in each case the data may be in fixed-point or floating-point
form. Fixed-point numbers may represent integers or fractions. Negative
numbers may be in signed-magnitude or signed-complement representation.
The arithmetic processor is very simple if only a binary fixed-point add
instruction is included. It would be more complicated if it includes all

335

C H A P T E R T E N

Computer Arithmetic

Chapter10.qxd 2/2/2007 6:38 PM Page 335

EON
PreMedia

CONFIRMING PGS

four arithmetic operations for binary and decimal data in fixed-point and
floating-point representation.

At an early age we are taught how to perform the basic arithmetic oper-
ations in signed-magnitude representation. This knowledge is valuable when
the operations are to be implemented by hardware. However, the designer
must be thoroughly familiar with the sequence of steps to be followed in
order to carry out the operation and achieve a correct result. The solution to
any problem that is stated by a finite number of well-defined procedural steps
is called an algorithm. An algorithm was stated in Sec. 3-3 for the addition of
two fixed-point binary numbers when negative numbers are in signed-2’s
complement representation. This is a simple algorithm since all it needs for
its implementation is a parallel binary adder. When negative numbers are in
signed-magnitude representation, the algorithm is slightly more complicated
and its implementation requires circuits to add and subtract, and to compare
the signs and the magnitudes of the numbers. Usually, an algorithm will con-
tain a number of procedural steps which are dependent on results of previous
steps. A convenient method for presenting algorithms is a flowchart. The com-
putational steps are specified in the flowchart inside rectangular boxes. The
decision steps are indicated inside diamond-shaped boxes from which two or
more alternate paths emerge.

In this chapter we develop the various arithmetic algorithms and show
the procedure for implementing them with digital hardware. We consider
addition, subtraction, multiplication, and division for the following types
of data:

1. Fixed-point binary data in signed-magnitude representation
2. Fixed-point binary data in signed-2’s complement representation
3. Floating-point binary data
4. Binary-coded decimal (BCD) data

10-2 Addition and Subtraction
As stated in Sec. 3-3, there are three ways of representing negative fixed-point
binary numbers: signed-magnitude, signed-1’s complement, or signed-2’s
complement. Most computers use the signed-2’s complement representation
when performing arithmetic operations with integers. For floating-point oper-
ations, most computers use the signed-magnitude representation for the man-
tissa. In this section we develop the addition and subtraction algorithms for
data represented in signed-magnitude and again for data represented in
signed-2’s complement.

It is important to realize that the adopted representation for negative
numbers refers to the representation of numbers in the registers before and

336 CHAPTER TEN Computer Arithmetic

algorithm

Chapter10.qxd 2/2/2007 6:38 PM Page 336

EON
PreMedia

CONFIRMING PGS

after the execution of the arithmetic operation. It does not mean that com-
plement arithmetic may not be used in an intermediate step. For example, it
is convenient to employ complement arithmetic when performing a sub-
traction operation with numbers in signed-magnitude representation. As
long as the initial minuend and subtrahend, as well as the final difference,
are in signed-magnitude form the fact that complements have been used in
an intermediate step does not alter the fact that the representation is in
signed-magnitude.

Addition and Subtraction with Signed-Magnitude Data
The representation of numbers in signed-magnitude is familiar because it is
used in everyday arithmetic calculations. The procedure for adding or sub-
tracting two signed binary numbers with paper and pencil is simple and
straight-forward. A review of this procedure will be helpful for deriving the
hardware algorithm.

We designate the magnitude of the two numbers by A and B. When the
signed numbers are added or subtracted, we find that there are eight different
conditions to consider, depending on the sign of the numbers and the opera-
tion performed. These conditions are listed in the first column of Table 10-1.
The other columns in the table show the actual operation to be performed
with the magnitude of the numbers. The last column is needed to prevent a neg-
ative zero. In other words, when two equal numbers are subtracted, the result
should be �0 not �0.

The algorithms for addition and subtraction are derived from the table
and can be stated as follows (the words inside parentheses should be used for
the subtraction algorithm):

Addition (subtraction) algorithm: when the signs of A and B are identical
(different), add the two magnitudes and attach the sign of A to the result.
When the signs of A and B are different (identical), compare the magnitudes

SECTION 10-2 Addition and Subtraction 337

magnitude

addition
(subtraction)
algorithm

TABLE 10-1 Addition and Subtraction of Signed-Magnitude Numbers

Add
Subtract Magnitudes

Operation Magnitudes When A � B When A � B When A � B

(�A) � (�B) �(A � B)
(�A) � (�B) �(A � B) �(B � A) �(A � B)
(�A) � (�B) �(A � B) �(B � A) �(A � B)
(�A) � (�B) �(A � B)
(�A) � (�B) �(A � B) �(B � A) �(A � B)
(�A) � (�B) �(A � B)
(�A) � (�B) �(A � B)
(�A) � (�B) �(A � B) �(B � A) �(A � B)

Chapter10.qxd 2/2/2007 6:38 PM Page 337

EON
PreMedia

CONFIRMING PGS

and subtract the smaller number from the larger. Choose the sign of the result
to be the same as A if A � B or the complement of the sign of A if A � B. If
the two magnitudes are equal, subtract B from A and make the sign of the
result positive.

The two algorithms are similar except for the sign comparison. The pro-
cedure to be followed for identical signs in the addition algorithm is the same
as for different signs in the subtraction algorithm, and vice versa.

Hardware Implementation
To implement the two arithmetic operations with hardware, it is first necessary
that the two numbers be stored in registers. Let A and B be two registers that
hold the magnitudes of the numbers, and As and Bs be two flip-flops that hold
the corresponding signs. The result of the operation may be transferred to a
third register: however, a saving is achieved if the result is transferred into
A and As. Thus A and As together form an accumulator register.

Consider now the hardware implementation of the algorithms above.
First, a parallel-adder is needed to perform the microoperation A � B. Second,
a comparator circuit is needed to establish if A � B, A � B, or A � B. Third,
two parallel-subtractor circuits are needed to perform the microoperations
A � B and B � A. The sign relationship can be determined from an exclusive-
OR gate with As and Bs as inputs.

This procedure requires a magnitude comparator, an adder, and two
subtractors. However, a different procedure can be found that requires less
equipment. First, we know that subtraction can be accomplished by means of
complement and add. Second, the result of a comparison can be determined
from the end carry after the subtraction. Careful investigation of the alterna-
tives reveals that the use of 2’s complement for subtraction and comparison is
an efficient procedure that requires only an adder and a complementer.

Figure 10-1 shows a block diagram of the hardware for implementing the
addition and subtraction operations. It consists of registers A and B and sign
flip-flops As and Bs. Subtraction is done by adding A to the 2’s complement of B.
The output carry is transferred to flip-flop E, where it can be checked to deter-
mine the relative magnitudes of the two numbers. The add-overflow flip-flop
AVF holds the overflow bit when A and B are added. The A register provides
other microoperations that may be needed when we specify the sequence of
steps in the algorithm.

The addition of A plus B is done through the parallel adder. The S (sum)
output of the adder is applied to the input of the A register. The complementer
provides an output of B or the complement of B depending on the state of the
mode control M. The complementer consists of exclusive-OR gates and the
parallel adder consists of full-adder circuits as shown in Fig. 4-7 in Chap. 4.
The M signal is also applied to the input carry of the adder. When M � 0, the
output of B is transferred to the adder, the input carry is 0, and the output of
the adder is equal to the sum A � B. When M � 1, the 1’s complement of B

338 CHAPTER TEN Computer Arithmetic

Chapter10.qxd 2/2/2007 6:38 PM Page 338

EON
PreMedia

CONFIRMING PGS

is applied to the adder, the input carry is 1, and output S � A �B— � 1. This
is equal to A plus the 2’s complement of B, which is equivalent to the sub-
traction A � B.

Hardware Algorithm
The flowchart for the hardware algorithm is presented in Fig. 10-2. The two
signs As and Bs are compared by an exclusive-OR gate. If the output of the gate
is 0, the signs are identical; if it is 1, the signs are different. For an add opera-
tion, identical signs dictate that the magnitudes be added. For a subtract opera-
tion, different signs dictate that the magnitudes be added. The magnitudes
are added with a microoperation E A ← A � B, where E A is a register that
combines E and A. The carry in E after the addition constitutes an overflow if
it is equal to 1. The value of E is transferred into the add-overflow flip-flop AVF.

The two magnitudes are subtracted if the signs are different for an add
operation or identical for a subtract operation. The magnitudes are subtracted
by adding A to the 2’s complement of B. No overflow can occur if the num-
bers are subtracted so AVF is cleared to 0. A 1 in E indicates that A � B and
the number in A is the correct result. If this number is zero, the sign As must
be made positive to avoid a negative zero. A 0 in E indicates that A � B. For
this case it is necessary to take the 2’s complement of the value in A. This
operation can be done with one microoperation A ← A— � 1. However, we
assume that the A register has circuits for microoperations complement and
increment, so the 2’s complement is obtained from these two microoperations.
In other paths of the flowchart, the sign of the result is the same as the sign
of A, so no change in As is required. However, when A � B, the sign of the
result is the complement of the original sign of A. It is then necessary to com-
plement As to obtain the correct sign. The final result is found in register A

SECTION 10-2 Addition and Subtraction 339

complement and
increment

B register

M (Mode control)

Input carry
Output
carry

Load sum

Bs

As

S

AVF

E

Complementer

Parallel adder

A register

Figure 10-1 Hardware for signed-magnitude addition and subtraction.

Chapter10.qxd 2/2/2007 6:38 PM Page 339

EON
PreMedia

CONFIRMING PGS

and its sign in As. The value in AVF provides an overflow indication. The final
value of E is immaterial.

Addition and Subtraction with Signed-2’s Complement Data
The signed-2’s complement representation of numbers together with arith-
metic algorithms for addition and subtraction are introduced in Sec. 3-3. They
are summarized here for easy reference. The leftmost bit of a binary number
represents the sign bit: 0 for positive and 1 for negative. If the sign bit is 1, the
entire number is represented in 2’s complement form. Thus �33 is represented

340 CHAPTER TEN Computer Arithmetic

Subtract operation

Minuend in A
Subtrahend in B

Augend in A
Addend in B

Add operation

� 0 � 0� 1

� 0

� 0

� 1

� 1
As ⊕ BsAs ⊕ Bs

As � Bs

As � Bs
As � Bs

As � Bs

E A ← A � B � 1
AVF ← 0

A ← A � 1
AS ← AS

A ← A

A < B A � B

EA ← A � B

AVF ← E
E

A

END
(result is in A and As)

AS ← 0

� 0�

�

Figure 10-2 Flowchart for add and subtract operations.

Chapter10.qxd 2/2/2007 6:38 PM Page 340

EON
PreMedia

CONFIRMING PGS

as 00100001 and �33 as 11011111. Note that 11011111 is the 2’s complement
of 00100001, and vice versa.

The addition of two numbers in signed-2’s complement form consists of
adding the numbers with the sign bits treated the same as the other bits of the
number. A carry-out of the sign-bit position is discarded. The subtraction
consists of first taking the 2’s complement of the subtrahend and then adding
it to the minuend.

When two numbers of n digits each are added and the sum occupies n � 1
digits, we say that an overflow occurred. The effect of an overflow on the sum
of two signed-2’s complement numbers is discussed in Sec. 3-3. An overflow
can be detected by inspecting the last two carries out of the addition. When
the two carries are applied to an exclusive-OR gate, the overflow is detected
when the output of the gate is equal to 1.

The register configuration for the hardware implementation is shown in
Fig. 10-3. This is the same configuration as in Fig. 10-1 except that the sign bits
are not separated from the rest of the registers. We name the A register AC
(accumulator) and the B register BR. The leftmost bit in AC and BR represent
the sign bits of the numbers. The two sign bits are added or subtracted
together with the other bits in the complementer and parallel adder. The over-
flow flip-flop V is set to 1 if there is an overflow. The output carry in this case
is discarded.

The algorithm for adding and subtracting two binary numbers in signed-2’s
complement representation is shown in the flowchart of Fig. 10-4. The sum is
obtained by adding the contents of AC and BR (including their sign bits). The
overflow bit V is set to 1 if the exclusive-OR of the last two carries is 1, and it
is cleared to 0 otherwise. The subtraction operation is accomplished by adding
the content of AC to the 2’s complement of BR. Taking the 2’s complement of
BR has the effect of changing a positive number to negative, and vice versa.
An overflow must be checked during this operation because the two numbers
added could have the same sign. The programmer must realize that if an over-
flow occurs, there will be an erroneous result in the AC register.

SECTION 10-2 Addition and Subtraction 341

BR register

V

Overflow

AC register

Complementer and
parallel adder

Figure 10-3 Hardware for signed-2’s complement addition and subtraction.

Chapter10.qxd 2/2/2007 6:38 PM Page 341

EON
PreMedia

CONFIRMING PGS

Comparing this algorithm with its signed-magnitude counterpart, we
note that it is much simpler to add and subtract numbers if negative numbers
are maintained in signed-2’s complement representation. For this reason most
computers adopt this representation over the more familiar signed-magnitude.

10-3 Multiplication Algorithms
Multiplication of two fixed-point binary numbers in signed-magnitude repre-
sentation is done with paper and pencil by a process of successive shift and
add operations. This process is best illustrated with a numerical example.

23 10111 Multiplicand
19 	 10011 Multiplier

10111
10111

00000 �
00000

10111
437 110110101 Product

The process consists of looking at successive bits of the multiplier, least signif-
icant bit first. If the multiplier bit is a 1, the multiplicand is copied down; oth-
erwise, zeros are copied down. The numbers copied down in successive lines
are shifted one position to the left from the previous number. Finally, the num-
bers are added and their sum forms the product.

342 CHAPTER TEN Computer Arithmetic

Subtract

Minuend in AC
Subtrahend in BR

Augend in AC
Addend in BR

Add

AC ← AC � BR � 1
V ← overflow

END END

AC ← AC � BR
V ← overflow

��

Figure 10-4 Algorithm for adding and subtracting numbers in signed-2’s
complement representation.

Chapter10.qxd 2/2/2007 6:38 PM Page 342

EON
PreMedia

CONFIRMING PGS

The sign of the product is determined from the signs of the multiplicand
and multiplier. If they are alike, the sign of the product is positive. If they are
unlike, the sign of the product is negative.

Hardware Implementation for Signed-Magnitude Data
When multiplication is implemented in a digital computer, it is convenient to
change the process slightly. First, instead of providing registers to store and add
simultaneously as many binary numbers as there are bits in the multiplier, it is
convenient to provide an adder for the summation of only two binary numbers
and successively accumulate the partial products in a register. Second, instead
of shifting the multiplicand to the left, the partial product is shifted to the right,
which results in leaving the partial product and the multiplicand in the required
relative positions. Third, when the corresponding bit of the multiplier is 0, there
is no need to add all zeros to the partial product since it will not alter its value.

The hardware for multiplication consists of the equipment shown in
Fig. 10-1 plus two more registers. These registers together with registers A
and B are shown in Fig. 10-5. The multiplier is stored in the Q register and
its sign in Q s. The sequence counter SC is initially set to a number equal to
the number of bits in the multiplier. The counter is decremented by 1 after
forming each partial product. When the content of the counter reaches zero,
the product is formed and the process stops.

Initially, the multiplicand is in register B and the multiplier in Q. The sum
of A and B forms a partial product which is transferred to the EA register. Both
partial product and multiplier are shifted to the right. This shift will be denoted
by the statement shr EAQ to designate the right shift depicted in Fig. 10-5. The

SECTION 10-3 Multiplication Algorithms 343

B register

Complementer and
parallel adder

A register Q register

Sequence counter (SC)

Q s

(rightmost bit)
Q nAs

E0

Bs

Figure 10-5 Hardware for multiply operation.

Chapter10.qxd 2/2/2007 6:38 PM Page 343

EON
PreMedia

CONFIRMING PGS

least significant bit of A is shifted into the most significant position of Q , the bit
from E is shifted into the most significant position of A, and 0 is shifted into E.
After the shift, one bit of the partial product is shifted into Q , pushing the mul-
tiplier bits one position to the right. In this manner, the rightmost flip-flop in
register Q , designated by Q n ,will hold the bit of the multiplier, which must be
inspected next.

Hardware Algorithm
Figure 10-6 is a flowchart of the hardware multiply algorithm. Initially, the
multiplicand is in B and the multiplier in Q. Their corresponding signs are in

344 CHAPTER TEN Computer Arithmetic

Multiply operation

END
(product is in AQ)

Multiplicand in B
Multiplier in Q

AS ← Q S ⊕ BS
Q S ← Q S ⊕ BS
A ← 0, E ← 0
SC ← n – 1

Q n

SC

� 1

� 0� 0

� 0

EA ← A � B

shr EAQ
SC ← SC – 1

Figure 10-6 Flowchart for multiply operation.

Chapter10.qxd 2/2/2007 6:38 PM Page 344

EON
PreMedia

CONFIRMING PGS

Bs and Q s , respectively. The signs are compared, and both A and Q are set to
correspond to the sign of the product since a double-length product will be
stored in registers A and Q. Registers A and E are cleared and the sequence
counter SC is set to a number equal to the number of bits of the multiplier. We
are assuming here that operands are transferred to registers from a memory
unit that has words of n bits. Since an operand must be stored with its sign,
one bit of the word will be occupied by the sign and the magnitude will con-
sist of n � 1 bits.

After the initialization, the low-order bit of the multiplier in Q n is tested.
If it is a 1, the multiplicand in B is added to the present partial product in A.
If it is a 0, nothing is done. Register EAQ is then shifted once to the right to
form the new partial product. The sequence counter is decremented by 1 and
its new value checked. If it is not equal to zero, the process is repeated and a
new partial product is formed. The process stops when SC � 0. Note that the
partial product formed in A is shifted into Q one bit at a time and eventually
replaces the multiplier. The final product is available in both A and Q , with
A holding the most significant bits and Q holding the least significant bits.

The previous numerical example is repeated in Table 10-2 to clarify the
hardware multiplication process. The procedure follows the steps outlined in
the flowchart.

Booth Multiplication Algorithm
Booth algorithm gives a procedure for multiplying binary integers in signed-2’s
complement representation. It operates on the fact that strings of 0’s in the mul-
tiplier require no addition but just shifting, and a string of 1’s in the multiplier
from bit weight 2k to weight 2m can be treated as 2k�1 � 2m. For example, the
binary number 001110 (�14) has a string of 1’s from 23 to 21 (k � 3, m � 1). The

SECTION 10-3 Multiplication Algorithms 345

TABLE 10-2 Numerical Example for Binary Multiplier

Multiplicand B � 10111 E A Q SC

Multiplier in Q 0 00000 10011 101
Q n � 1; add B 10111
First partial product 0 10111
Shift right EAQ 0 01011 11001 100
Q n � 1; add B 10111
Second partial product 1 00010
Shift right EAQ 0 10001 01100 011
Q n � 0; shift right EAQ 0 01000 10110 010
Q n � 0; shift right EAQ 0 00100 01011 001
Q n � 1; add B 10111
Fifth partial product 0 11011
Shift right EAQ 0 01101 10101 000
Final product in AQ � 0110110101

Chapter10.qxd 2/2/2007 6:38 PM Page 345

EON
PreMedia

CONFIRMING PGS

number can be represented as 2k � 1 � 2m � 24 � 21 � 16 �2 � 14. Therefore,
the multiplication M 	 14, where M is the multiplicand and 14 the multiplier, can
be done as M 	 24 �
 	 21. Thus the product can be obtained by shifting the
binary multiplicand M four times to the left and subtracting M shifted left once.

As in all multiplication schemes, Booth algorithm requires examination
of the multiplier bits and shifting of the partial product. Prior to the shifting,
the multiplicand may be added to the partial product, subtracted from the par-
tial product, or left unchanged according to the following rules:

1. The multiplicand is subtracted from the partial product upon encoun-
tering the first least significant 1 in a string of 1’s in the multiplier.

2. The multiplicand is added to the partial product upon encountering the
first 0 (provided that there was a previous 1) in a string of 0’s in the mul-
tiplier.

3. The partial product does not change when the multiplier bit is identi-
cal to the previous multiplier bit.

The algorithm works for positive or negative multipliers in 2’s comple-
ment representation. This is because a negative multiplier ends with a string
of 1’s and the last operation will be a subtraction of the appropriate weight.
For example, a multiplier equal to �14 is represented in 2’s complement as
110010 and is treated as �24 � 22 � 21 � �14.

The hardware implementation of Booth algorithm requires the register
configuration shown in Fig. 10-7. This is similar to Fig. 10-5 except that the sign
bits are not separated from the rest of the registers. To show this difference, we
rename registers A, B, and Q , as AC, BR, and QR, respectively. Q n designates
the least significant bit of the multiplier in register QR. An extra flip-flop Q n�1
is appended to QR to facilitate a double bit inspection of the multiplier. The
flowchart for Booth algorithm is shown in Fig. 10-8. AC and the appended

346 CHAPTER TEN Computer Arithmetic

BR register

AC register QR register

Complementer and
parallel adder

Sequence counter (SC)

Q n Q n � 1

Figure 10-7 Hardware for Booth algorithm.

Chapter10.qxd 2/2/2007 6:38 PM Page 346

EON
PreMedia

CONFIRMING PGS

SECTION 10-3 Multiplication Algorithms 347

AC ← 0
Q n � 1 ← 0

SC ← n

Multiplicand in BR
Multiplier in QR

AC ← AC � BR � 1 AC ← AC � BR

ashr(AC & QR)
SC ← SC – 1

Multiply

Q nQ n � 1

SC

END

� 0 � 0

� 10

� 00

� 11

� 01

��

Figure 10-8 Booth algorithm for multiplication of signed-2’s complement
numbers.

Chapter10.qxd 2/2/2007 6:38 PM Page 347

EON
PreMedia

CONFIRMING PGS

bit Q n�1 are initially cleared to 0 and the sequence counter SC is set to a num-
ber n equal to the number of bits in the multiplier. The two bits of the multi-
plier in Q n and Q n�1 are inspected. If the two bits are equal to 10, it means
that the first 1 in a string of 1’s has been encountered. This requires a sub-
traction of the multiplicand from the partial product in AC. If the two bits are
equal to 01, it means that the first 0 in a string of 0’s has been encountered.
This requires the addition of the multiplicand to the partial product in AC.
When the two bits are equal, the partial product does not change. An overflow
cannot occur because the addition and subtraction of the multiplicand follow
each other. As a consequence, the two numbers that are added always have
opposite signs, a condition that excludes an overflow. The next step is to shift
right the partial product and the multiplier (including bit Q n�1). This is an
arithmetic shift right (ashr) operation which shifts AC and QR to the right and
leaves the sign bit in AC unchanged (see Sec. 4-6). The sequence counter is
decremented and the computational loop is repeated n times.

A numerical example of Booth algorithm is shown in Table 10-3 for
n � 5. It shows the step-by-step multiplication of (�9) 	 (�13) � �117. Note
that the multiplier in QR is negative and that the multiplicand in BR is also
negative. The 10-bit product appears in AC and QR and is positive. The final
value of Q n�1 is the original sign bit of the multiplier and should not be taken
as part of the product.

Array Multiplier
Checking the bits of the multiplier one at a time and forming partial products
is a sequential operation that requires a sequence of add and shift microoper-
ations. The multiplication of two binary numbers can be done with one micro-
operation by means of a combinational circuit that forms the product bits all

348 CHAPTER TEN Computer Arithmetic

TABLE 10-3 Example of Multiplication with Booth Algorithm

BR � 10111
Q nQ n � 1 BR�

� 1 = 01001 AC QR Q n+1 SC

Initial 00000 10011 0 101
1 0 Subtract BR 01001

01001
ashr 00100 11001 1 100

1 1 ashr 00010 01100 1 011
0 1 Add BR 10111

11001
ashr 11100 10110 0 010

0 0 ashr 11110 01011 0 001
1 0 Subtract BR 01001

00111
ashr 00011 10101 1 000

Chapter10.qxd 2/2/2007 6:38 PM Page 348

EON
PreMedia

CONFIRMING PGS

at once. This is a fast way of multiplying two numbers since all it takes is the
time for the signals to propagate through the gates that form the multiplication
array. However, an array multiplier requires a large number of gates, and for
this reason it was not economical until the development of integrated circuits.

To see how an array multiplier can be implemented with a combinational
circuit, consider the multiplication of two 2-bit numbers as shown in Fig. 10-9.
The multiplicand bits are b1 and b0, the multiplier bits are a1 and a0, and the
product is c3c 2c1c0. The first partial product is formed by multiplying a0 by b1,
b0. The multiplication of two bits such as a0 and b0 produces a 1 if both bits
are 1; otherwise, it produces a 0. This is identical to an AND operation and can
be implemented with an AND gate. As shown in the diagram, the first partial
product is formed by means of two AND gates. The second partial product is
formed by multiplying a1 by b1b0 and is shifted one position to the left. The two
partial products are added with two half-adder (HA) circuits. Usually, there are
more bits in the partial products and it will be necessary to use full-adders to
produce the sum. Note that the least significant bit of the product does not have
to go through an adder since it is formed by the output of the first AND gate.

A combinational circuit binary multiplier with more bits can be con-
structed in a similar fashion. A bit of the multiplier is ANDed with each bit of
the multiplicand in as many levels as there are bits in the multiplier. The binary
output in each level of AND gates is added in parallel with the partial product
of the previous level to form a new partial product. The last level produces the
product. For j multiplier bits and k multiplicand bits we need j 	 k AND gates
and (j � 1)k-bit adders to produce a product of j � k bits.

As a second example, consider a multiplier circuit that multiplies a
binary number of four bits with a number of three bits. Let the multiplicand

SECTION 10-3 Multiplication Algorithms 349

a0

a1

b1 b0
a1 a0

b1 b0

b1

c0c1c2c3

b0

HA
C S

HA
C S

a0b1 a0b0

a1b1 a1b0

c3 c2 c1 c0

Figure 10-9 2-bit by 2-bit array multiplier.

Chapter10.qxd 2/2/2007 6:38 PM Page 349

EON
PreMedia

CONFIRMING PGS

be represented by b3b2b1b0 and the multiplier by a 2a1a0. Since k � 4
and j � 3, we need 12 AND gates and two 4-bit adders to produce a product
of seven bits. The logic diagram of the multiplier is shown in Fig. 10-10.

10-4 Division Algorithms
Division of two fixed-point binary numbers in signed-magnitude representa-
tion is done with paper and pencil by a process of successive compare, shift,
and subtract operations. Binary division is simpler than decimal division

350 CHAPTER TEN Computer Arithmetic

b3 b2 b1 b0

b0

Augend

Augend

Addend

Addend

4-bit adder

Sum and output carry

4-bit adder

Sum and output carry

0

b1b2b3
a1

a0

b0
a2

c6 c5 c4 c3 c2 c1 c0

b1b2b3

Figure 10-10 4-bit by 3-bit array multiplier.

Chapter10.qxd 2/2/2007 6:38 PM Page 350

EON
PreMedia

CONFIRMING PGS

because the quotient digits are either 0 or 1 and there is no need to estimate
how many times the dividend or partial remainder fits into the divisor. The
division process is illustrated by a numerical example in Fig. 10-11. The divi-
sor B consists of five bits and the dividend A, of ten bits. The five most signif-
icant bits of the dividend are compared with the divisor. Since the 5-bit
number is smaller than B, we try again by taking the six most significant bits
of A and compare this number with B. The 6-bit number is greater than B, so
we place a 1 for the quotient bit in the sixth position above the dividend. The
divisor is then shifted once to the right and subtracted from the dividend. The
difference is called a partial remainder because the division could have stopped
here to obtain a quotient of 1 and a remainder equal to the partial remainder.
The process is continued by comparing a partial remainder with the divisor.
If the partial remainder is greater than or equal to the divisor, the quotient bit
is equal to 1. The divisor is then shifted right and subtracted from the partial
remainder. If the partial remainder is smaller than the divisor, the quotient bit
is 0 and no subtraction is needed. The divisor is shifted once to the right in
any case. Note that the result gives both a quotient and a remainder.

Hardware Implementation for Signed-Magnitude Data
When the division is implemented in a digital computer, it is convenient to
change the process slightly. Instead of shifting the divisor to the right, the div-
idend, or partial remainder, is shifted to the left, thus leaving the two numbers
in the required relative position. Subtraction may be achieved by adding A to
the 2’s complement of B. The information about the relative magnitudes is
then available from the end-carry.

The hardware for implementing the division operation is identical to that
required for multiplication and consists of the components shown in Fig. 10-5.
Register EAQ is now shifted to the left with 0 inserted into Q n and the previ-
ous value of E lost. The numerical example is repeated in Fig. 10-12 to clarify

SECTION 10-4 Division Algorithms 351

Divisor:
B � 10001

11010
0111000000
01110
011100
- 10001
-010110
--10001
--001010
---010100
----10001
----000110
-----00110

Quotient � Q
Dividend � A
5 bits of A < B, quotient has 5 bits
6 bits of A � B
Shift right B and subtract; enter 1 in Q

7 bits of remainder � B
Shift right B and subtract; enter 1 in Q
Remainder < B; enter 0 in Q ; shift right B
Remainder � B
Shift right B and subtract; enter 1 in Q
Remainder < B; enter 0 in Q
Final remainder

Figure 10-11 Example of binary division.

partial remainder

Chapter10.qxd 2/2/2007 6:38 PM Page 351

EON
PreMedia

CONFIRMING PGS

the proposed division process. The divisor is stored in the B register and the
double-length dividend is stored in registers A and Q. The dividend is shifted
to the left and the divisor is subtracted by adding its 2’s complement value.
The information about the relative magnitude is available in E. If E � 1, it
signifies that A � B. A quotient bit 1 is inserted into Q n and the partial remain-
der is shifted to the left to repeat the process. If E � 0, it signifies that A � B so
the quotient in Q n remains a 0 (inserted during the shift). The value of B is
then added to restore the partial remainder in A to its previous value. The par-
tial remainder is shifted to the left and the process is repeated again until all
five quotient bits are formed. Note that while the partial remainder is shifted
left, the quotient bits are shifted also and after five shifts, the quotient is in
Q and the final remainder is in A.

Before showing the algorithm in flowchart form, we have to consider the
sign of the result and a possible overflow condition. The sign of the quotient
is determined from the signs of the dividend and the divisor. If the two signs

352 CHAPTER TEN Computer Arithmetic

Divisor B � 10001, B � 1 � 01111�

Dividend:
shl EAQ
add B � 1�

E � 1
Set Q n � 1
shl EAQ
Add B � 1�

E � 1
Set Q n � 1
shl EAQ
Add B � 1

�

E � 0; leave Q n � 0
Add B

E � 0; leave Q n � 0
Add B

Restore remainder
shl EAQ
Add B � 1�

E � 1
Set Q n � 1
shl EAQ
Add B � 1�

Restore remainder
Neglect E
Remainder in A:
Quotient in Q :

E A

0

1
1
0

1
1
0

01110
11100
01111

01011
01011
10110
01111
00101
00101
01010
01111
11001
10001

10101
10001
00110

01010
10100
01111
00011
00011
00110
01111

Q SC

0

0

1

1
0

1
1
0

00110
11010

11010

11010

11010
01101

01100

00110

00110

00010
00001

00000
00000

00011

5

4

3

2

1

0

Figure 10-12 Example of binary division with digital hardware.

Chapter10.qxd 2/2/2007 6:38 PM Page 352

EON
PreMedia

CONFIRMING PGS

are alike, the sign of the quotient is plus. If they are unalike, the sign is minus.
The sign of the remainder is the same as the sign of the dividend.

Divide Overflow
The division operation may result in a quotient with an overflow. This is not
a problem when working with paper and pencil but is critical when the oper-
ation is implemented with hardware. This is because the length of registers is
finite and will not hold a number that exceeds the standard length. To see this,
consider a system that has 5-bit registers. We use one register to hold the divi-
sor and two registers to hold the dividend. From the example of Fig. 10-11 we
note that the quotient will consist of six bits if the five most significant bits of
the dividend constitute a number greater than the divisor. The quotient is to
be stored in a standard 5-bit register, so the overflow bit will require one more
flip-flop for storing the sixth bit. This divide-overflow condition must be
avoided in normal computer operations because the entire quotient will be too
long for transfer into a memory unit that has words of standard length, that is,
the same as the length of registers. Provisions to ensure that this condition is
detected must be included in either the hardware or the software of the com-
puter, or in a combination of the two.

When the dividend is twice as long as the divisor, the condition for
overflow can be stated as follows: A divide-overflow condition occurs if the
high-order half bits of the dividend constitute a number greater than or equal
to the divisor. Another problem associated with division is the fact that a divi-
sion by zero must be avoided. The divide-overflow condition takes care of this
condition as well. This occurs because any dividend will be greater than or
equal to a divisor which is equal to zero. Overflow condition is usually
detected when a special flip-flop is set. We will call it a divide-overflow flip-
flop and label it DVF.

The occurrence of a divide overflow can be handled in a variety of ways.
In some computers it is the responsibility of the programmers to check if DVF
is set after each divide instruction. They then can branch to a subroutine that
takes a corrective measure such as rescaling the data to avoid overflow. In
some older computers, the occurrence of a divide overflow stopped the com-
puter and this condition was referred to as a divide stop. Stopping the operation
of the computer is not recommended because it is time consuming. The pro-
cedure in most computers is to provide an interrupt request when DVF is set.
The interrupt causes the computer to suspend the current program and branch
to a service routine to take a corrective measure. The most common correc-
tive measure is to remove the program and type an error message explaining
the reason why the program could not be completed. It is then the responsi-
bility of the user who wrote the program to rescale the data or take any other
corrective measure. The best way to avoid a divide overflow is to use floating-
point data. We will see in Sec. 10-5 that a divide overflow can be handled very
simply if numbers are in floating-point representation.

SECTION 10-4 Division Algorithms 353

Chapter10.qxd 2/2/2007 6:38 PM Page 353

EON
PreMedia

CONFIRMING PGS

Hardware Algorithm
The hardware divide algorithm is shown in the flowchart of Fig. 10-13. The
dividend is in A and Q and the divisor in B. The sign of the result is trans-
ferred into Q s to be part of the quotient. A constant is set into the sequence
counter SC to specify the number of bits in the quotient. As in multiplica-
tion, we assume that operands are transferred to registers from a memory

354 CHAPTER TEN Computer Arithmetic

Dividend in AQ
Divisor in B

Divide magnitudes

END
(Divide overflow)

END
(Quotient is in Q

remainder is in A)

Divide operation

Q s ← As ⊕ Bs
SC ← n � 1

EA ← A � B � 1�

EA ← A � B � 1�

EA ← A � B Q n ← 1

A ← A � B � 1�

shl EAQ

EA ← A � B
DVF ← 1

EA ← A � B
DVF ← 0

E E

SC

E

A < B
A < B

� 0

� 0 � 1

� 0 � 0

� 1 � 0 � 1

A�B
A �B

SC ← SC – 1

Figure 10-13 Flowchart for divide operation.

Chapter10.qxd 2/2/2007 6:38 PM Page 354

EON
PreMedia

CONFIRMING PGS

unit that has words of n bits. Since an operand must be stored with its sign,
one bit of the word will be occupied by the sign and the magnitude will con-
sist of n �1 bits.

A divide-overflow condition is tested by subtracting the divisor in B
from half of the bits of the dividend stored in A. If A � B, the divide-overflow
flip-flop DVF is set and the operation is terminated prematurely. If A � B,
no divide overflow occurs so the value of the dividend is restored by
adding B to A.

The division of the magnitudes starts by shifting the dividend in AQ to
the left with the high-order bit shifted into E. If the bit shifted into E is 1, we
know that EA � B because EA consists of a 1 followed by n�1 bits while B
consists of only n � 1 bits. In this case, B must be subtracted from EA and 1
inserted into Q n for the quotient bit. Since register A is missing the high-order
bit of the dividend (which is in E), its value is EA � 2n �1. Adding to this value
the 2’s complement of B results in

(EA � 2n �1) � (2n �1 � B) � EA � B

The carry from this addition is not transferred to E if we want E to remain a 1.
If the shift-left operation inserts a 0 into E, the divisor is subtracted by

adding its 2’s complement value and the carry is transferred into E.If E � 1, it
signifies that A � B; therefore, Q n is set to 1. If E � 0, it signifies that A � B
and the original number is restored by adding B to A. In the latter case we
leave a 0 in Q n (0 was inserted during the shift).

This process is repeated again with register A holding the partial remain-
der. After n — 1 times, the quotient magnitude is formed in register Q and the
remainder is found in register A. The quotient sign is in Q s and the sign of the
remainder in As is the same as the original sign of the dividend.

Other Algorithms
The hardware method just described is called the restoring method. The reason
for this name is that the partial remainder is restored by adding the divisor to
the negative difference. Two other methods are available for dividing num-
bers, the comparison method and the nonrestoring method. In the comparison
method A and B are compared prior to the subtraction operation. Then if A �
B, B is subtracted from A. If A � B nothing is done. The partial remainder is
shifted left and the numbers are compared again. The comparison can be
determined prior to the subtraction by inspecting the end-carry out of the par-
allel-adder prior to its transfer to register E.

In the nonrestoring method, B is not added if the difference is nega-
tive but instead, the negative difference is shifted left and then B is added.
To see why this is possible consider the case when A � B. From the flow-
chart in Fig. 9-11 we note that the operations performed are A � � B; that

SECTION 10-4 Division Algorithms 355

restoring method

comparison and
nonrestoring
method

Chapter10.qxd 2/2/2007 6:38 PM Page 355

EON
PreMedia

CONFIRMING PGS

is, B is subtracted and then added to restore A. The next time around the
loop, this number is shifted left (or multiplied by 2) and B subtracted again.
This gives 2(A � B � B) �B � 2A � B. This result is obtained in the non-
restoring method by leaving A — B as is. The next time around the loop, the
number is shifted left and B added to give 2(A � B) � B � 2A � B, which is
the same as before. Thus, in the nonrestoring method, B is subtracted if the
previous value of Q n was a 1, but B is added if the previous value of Q n was
a 0 and no restoring of the partial remainder is required. This process saves
the step of adding the divisor if A is less than B, but it requires special
control logic to remember the previous result. The first time the dividend is
shifted, B must be subtracted. Also, if the last bit of the quotient is 0, the
partial remainder must be restored to obtain the correct final remainder.

10-5 Floating-Point Arithmetic Operations
Many high-level programming languages have a facility for specifying floating-
point numbers. The most common way is to specify them by a real declaration
statement as opposed to fixed-point numbers, which are specified by an inte-
ger declaration statement. Any computer that has a compiler for such high-
level programming language must have a provision for handling floating-point
arithmetic operations. The operations are quite often included in the internal
hardware. If no hardware is available for the operations, the compiler must be
designed with a package of floating-point software subroutines. Although the
hardware method is more expensive, it is so much more efficient than the soft-
ware method that floating-point hardware is included in most computers and
is omitted only in very small ones. Examples of floating-point hardware
devices are Intel 8231, arithmetic processor and AMD’s Am9512 floating-point
processor. The Am9512 provides add, subtract, multiply, and divide opera-
tions for 32-bit and 64-bit operands. It can be easily interfaced to enhance the
computational capabilities of the host CPU.

Basic Considerations
Floating-point representation of data was introduced in Sec. 3-4. A floating-
point number in computer registers consists of two parts: a mantissa m and an
exponent e. The two parts represent a number obtained from multiplying
m times a radix r raised to the value of e; thus

m 	 re

The mantissa may be a fraction or an integer. The location of the radix point
and the value of the radix r are assumed and are not included in the registers.
For example, assume a fraction representation and a radix 10. The decimal

356 CHAPTER TEN Computer Arithmetic

integer declaration
statement

Chapter10.qxd 2/2/2007 6:38 PM Page 356

EON
PreMedia

CONFIRMING PGS

number 537.25 is represented in a register with m � 53725 and e � 3 and is
interpreted to represent the floating-point number

.53725 	 103

A floating-point number is normalized if the most significant digit of the
mantissa is nonzero. In this way the mantissa contains the maximum possible
number of significant digits. A zero cannot be normalized because it does not
have a nonzero digit. It is represented in floating-point by all 0’s in the man-
tissa and exponent.

Floating-point representation increases the range of numbers that can be
accommodated in a given register. Consider a computer with 48-bit words. Since
one bit must be reserved for the sign, the range of fixed-point integer numbers
will be ±(247 � 1), which is approximately ±1014. The 48 bits can be used to rep-
resent a floating-point number with 36 bits for the mantissa and 12 bits for the
exponent. Assuming fraction representation for the mantissa and taking the two
sign bits into consideration, the range of numbers that can be accommodated is

±(1 � 2�35) 	 22047

This number is derived from a fraction that contains 35 1’s, an exponent of
11 bits (excluding its sign), and the fact that 211 � 1 � 2047. The largest number
that can be accommodated is approximately 10615, which is a very large number.
The mantissa can accommodate 35 bits (excluding the sign) and if considered as
an integer it can store a number as large as (235 — 1). This is approximately equal
to 1010, which is equivalent to a decimal number of 10 digits.

Computers with shorter word lengths use two or more words to repre-
sent a floating-point number. An 8-bit microcomputer may use four words to
represent one floating-point number. One word of 8 bits is reserved for the
exponent and the 24 bits of the other three words are used for the mantissa.

Arithmetic operations with floating-point numbers are more complicated
than with fixed-point numbers and their execution takes longer and requires
more complex hardware. Adding or subtracting two numbers requires first an
alignment of the radix point since the exponent parts must be made equal
before adding or subtracting the mantissas. The alignment is done by shifting
one mantissa while its exponent is adjusted until it is equal to the other expo-
nent. Consider the sum of the following floating-point numbers:

.5372400 	 102

�.1580000 	 10�1

It is necessary that the two exponents be equal before the mantissas can be
added. We can either shift the first number three positions to the left, or shift
the second number three positions to the right. When the mantissas are stored
in registers, shifting to the left causes a loss of most significant digits. Shifting

SECTION 10-5 Floating-Point Arithmetic Operations 357

Chapter10.qxd 2/2/2007 6:38 PM Page 357

EON
PreMedia

CONFIRMING PGS

to the right causes a loss of least significant digits. The second method is
preferable because it only reduces the accuracy, while the first method may
cause an error. The usual alignment procedure is to shift the mantissa that has
the smaller exponent to the right by a number of places equal to the difference
between the exponents. After this is done, the mantissas can be added:

.5372400 	 102

�.0001580 	 102

�.5373980 	 102

When two normalized mantissas are added, the sum may contain an over-
flow digit. An overflow can be corrected easily by shifting the sum once to the
right and incrementing the exponent. When two numbers are subtracted, the -
result may contain most significant zeros as shown in the following example:

.56780 	 105

�.56430 	 105

.00350 	 105

A floating-point number that has a 0 in the most significant position of the
mantissa is said to have an underflow. To normalize a number that contains an
underflow, it is necessary to shift the mantissa to the left and decrement the
exponent until a nonzero digit appears in the first position. In the example
above, it is necessary to shift left twice to obtain .35000 	 103. In most com-
puters, a normalization procedure is performed after each operation to ensure
that all results are in a normalized form.

Floating-point multiplication and division do not require an alignment of
the mantissas. The product can be formed by multiplying the two mantissas
and adding the exponents. Division is accomplished by dividing the mantis-
sas and subtracting the exponents.

The operations performed with the mantissas are the same as in fixed-
point numbers, so the two can share the same registers and circuits. The oper-
ations performed with the exponents are compare and increment (for aligning
the mantissas), add and subtract (for multiplication and division), and decre-
ment (to normalize the result). The exponent may be represented in any one
of the three representations: signed-magnitude, signed-2’s complement, or
signed-1’s complement.

A fourth representation employed in many computers is known as a
biased exponent. In this representation, the sign bit is removed from being a
separate entity. The bias is a positive number that is added to each exponent as
the floating-point number is formed, so that internally all exponents are posi-
tive. The following example may clarify this type of representation. Consider
an exponent that ranges from �50 to 49. Internally, it is represented by two
digits (without a sign) by adding to it a bias of 50. The exponent register con-
tains the number e � 50, where e is the actual exponent. This way, the expo-
nents are represented in registers as positive numbers in the range of 00 to 99.

358 CHAPTER TEN Computer Arithmetic

Chapter10.qxd 2/2/2007 6:38 PM Page 358

EON
PreMedia

CONFIRMING PGS

Positive exponents in registers have the range of numbers from 99 to 50. The
subtraction of 50 gives the positive values from 49 to 0. Negative exponents are
represented in registers in the range from 49 to 00. The subtraction of 50 gives
the negative values in the range of �1 to �50.

The advantage of biased exponents is that they contain only positive
numbers. It is then simpler to compare their relative magnitude without being
concerned with their signs. As a consequence, a magnitude comparator can be
used to compare their relative magnitude during the alignment of the man-
tissa. Another advantage is that the smallest possible biased exponent contains
all zeros. The floating-point representation of zero is then a zero mantissa and
the smallest possible exponent.

In the examples above, we used decimal numbers to demonstrate some
of the concepts that must be understood when dealing with floating-point
numbers. Obviously, the same concepts apply to binary numbers as well. The
algorithms developed in this section are for binary numbers. Decimal com-
puter arithmetic is discussed in the next section.

Register Configuration
The register configuration for floating-point operations is quite similar to the
layout for fixed-point operations. As a general rule, the same registers and
adder used for fixed-point arithmetic are used for processing the mantissas.
The difference lies in the way the exponents are handled.

The register organization for floating-point operations is shown in
Fig. 10-14. There are three registers, BR, AC, and QR. Each register is subdi-
vided into two parts. The mantissa part has the same uppercase letter symbols
as in fixed-point representation. The exponent part uses the corresponding
lowercase letter symbol.

It is assumed that each floating-point number has a mantissa in signed-
magnitude representation and a biased exponent. Thus the AC has a mantissa

SECTION 10-5 Floating-Point Arithmetic Operations 359

B

A a

q

b BR

AC

QR

E Parallel-adder Parallel-adder
and comparator

As

Bs

A 1

QQ s

Figure 10-14 Registers for floating-point arithmetic operations.

Chapter10.qxd 2/2/2007 6:38 PM Page 359

EON
PreMedia

CONFIRMING PGS

whose sign is in As and a magnitude that is in A. The exponent is in the part
of the register denoted by the lowercase letter symbol a. The diagram shows
explicitly the most significant bit of A, labeled by A1. The bit in this position
must be a 1 for the number to be normalized. Note that the symbol AC repre-
sents the entire register, that is, the concatenation of As, A, and a.

Similarly, register BR is subdivided into Bs, B, and b, and QR into Q s , Q ,
and q. A parallel-adder adds the two mantissas and transfers the sum into A
and the carry into E. A separate parallel-adder is used for the exponents. Since
the exponents are biased, they do not have a distinct sign bit but are repre-
sented as a biased positive quantity. It is assumed that the floating-point num-
bers are so large that the chance of an exponent overflow is very remote, and
for this reason the exponent overflow will be neglected. The exponents are
also connected to a magnitude comparator that provides three binary outputs
to indicate their relative magnitude.

The number in the mantissa will be taken as a fraction, so the binary point
is assumed to reside to the left of the magnitude part. Integer representation
for floating-point causes certain scaling problems during multiplication and
division. To avoid these problems, we adopt a fraction representation.

The numbers in the registers are assumed to be initially normalized. After
each arithmetic operation, the result will be normalized. Thus all floating-point
operands coming from and going to the memory unit are always normalized.

Addition and Subtraction
During addition or subtraction, the two floating-point operands are in AC and
BR. The sum or difference is formed in the AC. The algorithm can be divided
into four consecutive parts:

1. Check for zeros.
2. Align the mantissas.
3. Add or subtract the mantissas.
4. Normalize the result.

A floating-point number that is zero cannot be normalized. If this num-
ber is used during the computation, the result may also be zero. Instead of
checking for zeros during the normalization process we check for zeros at the
beginning and terminate the process if necessary. The alignment of the man-
tissas must be carried out prior to their operation. After the mantissas are
added or subtracted, the result may be unnormalized. The normalization pro-
cedure ensures that the result is normalized prior to its transfer to memory.

The flowchart for adding or subtracting two floating-point binary num-
bers is shown in Fig. 10-15. If BR is equal to zero, the operation is terminated,
with the value in the AC being the result. If AC is equal to zero, we transfer the

360 CHAPTER TEN Computer Arithmetic

Chapter10.qxd 2/2/2007 6:38 PM Page 360

EON
PreMedia

CONFIRMING PGS

SECTION 10-5 Floating-Point Arithmetic Operations 361

BR

Add or subtract

AC

AC ← BR

As ← As

As ⊕ Bs As ⊕ Bs

Check
for

zeros

Align
mantissas

Mantissa
addition

or
subtraction

Normalization

Add
op

shr A
a ← a � 1

shr B
b ← b � 1

Sub

Sub Add
op

a : b

 a � b

 a < b a > b

� 0

� 0

� 0

� 1

� 1 � 1 � 0

� 0 � 0 � 0

� 0 � 0

� 0 � 1

� 0

� 1

�

EA ← A � B � 1�

A ← A �1
As ← As

�
�

shl A
a ← a �1

shr A
A1 ← E

a ← a �1

EA ← A � B

AC ← 0

E

A

E

A1

END

Figure 10-15 Addition and subtraction of floating-point numbers.

Chapter10.qxd 2/2/2007 6:38 PM Page 361

EON
PreMedia

CONFIRMING PGS

content of BR into AC and also complement its sign if the numbers are
to be subtracted. If neither number is equal to zero, we proceed to align
the mantissas.

The magnitude comparator attached to exponents a and b provides three
outputs that indicate their relative magnitude. If the two exponents are equal,
we go to perform the arithmetic operation. If the exponents are not equal, the
mantissa having the smaller exponent is shifted to the right and its exponent
incremented. This process is repeated until the two exponents are equal.

The addition and subtraction of the two mantissas is identical to the fixed-
point addition and subtraction algorithm presented in Fig. 10-2. The magnitude
part is added or subtracted depending on the operation and the signs of the two
mantissas. If an overflow occurs when the magnitudes are added, it is trans-
ferred into flip-flop E. If E is equal to 1, the bit is transferred into A1 and
all other bits of A are shifted right. The exponent must be incremented to main-
tain the correct number. No underflow may occur in this case because the
original mantissa that was not shifted during the alignment was already in a
normalized position.

If the magnitudes were subtracted, the result may be zero or may have
an underflow. If the mantissa is zero, the entire floating-point number in the
AC is made zero. Otherwise, the mantissa must have at least one bit that is
equal to 1. The mantissa has an underflow if the most significant bit in posi-
tion A1 is 0. In that case, the mantissa is shifted left and the exponent decre-
mented. The bit in A1 is checked again and the process is repeated until it
is equal to 1. When A1 � 1, the mantissa is normalized and the operation
is completed.

Multiplication
The multiplication of two floating-point numbers requires that we multiply the
mantissas and add the exponents. No comparison of exponents or alignment of
mantissas is necessary. The multiplication of the mantissas is performed in the
same way as in fixed-point to provide a double-precision product. The double-
precision answer is used in fixed-point numbers to increase the accuracy of the
product. In floating-point, the range of a single-precision mantissa combined
with the exponent is usually accurate enough so that only single-precision num-
bers are maintained. Thus the half most significant bits of the mantissa product
and the exponent will be taken together to form a single-precision floating-
point product.

The multiplication algorithm can be subdivided into four parts:

1. Check for zeros.
2. Add the exponents.
3. Multiply the mantissas.
4. Normalize the product.

362 CHAPTER TEN Computer Arithmetic

Chapter10.qxd 2/2/2007 6:38 PM Page 362

EON
PreMedia

CONFIRMING PGS

Steps 2 and 3 can be done simultaneously if separate adders are available for
the mantissas and exponents.

The flowchart for floating-point multiplication is shown in Fig. 10-16.
The two operands are checked to determine if they contain a zero. If either
operand is equal to zero, the product in the AC is set to zero and the operation

SECTION 10-5 Floating-Point Arithmetic Operations 363

AC ← 0
a ← q

a ← a � b

Multiplicand in BR
Multiplier in QR

END
(product is in AC)

a ← a � bias

Multiply mantissa
as in Fig. 10-6

BR

QR

� 0

� 0

� 0

� 1

� 0

� 0

A1
shl AQ

a ← a � 1

Multiply

Figure 10-16 Multiplication of floating-point numbers.

Chapter10.qxd 2/2/2007 6:38 PM Page 363

EON
PreMedia

CONFIRMING PGS

is terminated. If neither of the operands is equal to zero, the process continues
with the exponent addition.

The exponent of the multiplier is in q and the adder is between expo-
nents a and b. It is necessary to transfer the exponents from q to a, add the two
exponents, and transfer the sum into a. Since both exponents are biased by the
addition of a constant, the exponent sum will have double this bias. The cor-
rect biased exponent for the product is obtained by subtracting the bias num-
ber from the sum.

The multiplication of the mantissas is done as in the fixed-point case with
the product residing in A and Q. Overflow cannot occur during multiplication,
so there is no need to check for it.

The product may have an underflow, so the most significant bit in A is
checked. If it is a 1, the product is already normalized. If it is a 0, the mantissa
in AQ is shifted left and the exponent decremented. Note that only one normal-
ization shift is necessary. The multiplier and multiplicand were originally nor-
malized and contained fractions. The smallest normalized operand is 0.1, so the
smallest possible product is 0.01. Therefore, only one leading zero may occur.

Although the low-order half of the mantissa is in Q , we do not use it for
the floating-point product. Only the value in the AC is taken as the product.

Division
Floating-point division requires that the exponents be subtracted and the man-
tissas divided. The mantissa division is done as in fixed-point except that the
dividend has a single-precision mantissa that is placed in the AC. Remember
that the mantissa dividend is a fraction and not an integer. For integer repre-
sentation, a single-precision dividend must be placed in register Q and regis-
ter A must be cleared. The zeros in A are to the left of the binary point and
have no significance. In fraction representation, a single-precision dividend is
placed in register A and register Q is cleared. The zeros in Q are to the right of
the binary point and have no significance.

The check for divide-overflow is the same as in fixed-point representa-
tion. However, with floating-point numbers the divide-overflow imposes no
problems. If the dividend is greater than or equal to the divisor, the dividend
fraction is shifted to the right and its exponent incremented by 1. For normal-
ized operands this is a sufficient operation to ensure that no mantissa divide-
overflow will occur. The operation above is referred to as a dividend alignment.

The division of two normalized floating-point numbers will always
result in a normalized quotient provided that a dividend alignment is carried
out before the division. Therefore, unlike the other operations, the quotient
obtained after the division does not require a normalization.

The division algorithm can be subdivided into five parts:

1. Check for zeros.
2. Initialize registers and evaluate the sign.

364 CHAPTER TEN Computer Arithmetic

dividend alignment

Chapter10.qxd 2/2/2007 6:38 PM Page 364

EON
PreMedia

CONFIRMING PGS

3. Align the dividend.
4. Subtract the exponents.
5. Divide the mantissas.

The flowchart for floating-point division is shown in Fig. 10-17. The two
operands are checked for zero. If the divisor is zero, it indicates an attempt to
divide by zero, which is an illegal operation. The operation is terminated with
an error message. An alternative procedure would be to set the quotient in QR
to the most positive number possible (if the dividend is positive) or to the most
negative possible (if the dividend is negative). If the dividend in AC is zero, the
quotient in QR is made zero and the operation terminates.

If the operands are not zero, we proceed to determine the sign of the
quotient and store it in Q s. The sign of the dividend in As is left unchanged to
be the sign of the remainder. The Q register is cleared and the sequence
counter SC is set to a number equal to the number of bits in the quotient.

The dividend alignment is similar to the divide-overflow check in the
fixed-point operation. The proper alignment requires that the fraction divi-
dend be smaller than the divisor. The two fractions are compared by a sub-
traction test. The carry in E determines their relative magnitude. The dividend
fraction is restored to its original value by adding the divisor. If A � B, it is
necessary to shift A once to the right and increment the dividend exponent.
Since both operands are normalized, this alignment ensures that A � B.

Next, the divisor exponent is subtracted from the dividend exponent.
Since both exponents were originally biased, the subtraction operation gives
the difference without the bias. The bias is then added and the result trans-
ferred into q because the quotient is formed in QR.

The magnitudes of the mantissas are divided as in the fixed-point case.
After the operation, the mantissa quotient resides in Q and the remainder in A.
The floating-point quotient is already normalized and resides in QR. The expo-
nent of the remainder should be the same as the exponent of the dividend. The
binary point for the remainder mantissa lies (n � 1) positions to the left of A1.
The remainder can be converted to a normalized fraction by subtracting n — 1
from the dividend exponent and by shift and decrement until the bit in A1 is
equal to 1. This is not shown in the flow chart and is left as an exercise.

10-6 Decimal Arithmetic Unit
The user of a computer prepares data with decimal numbers and receives
results in decimal form. A CPU with an arithmetic logic unit can perform
arithmetic microoperations with binary data. To perform arithmetic opera-
tions with decimal data, it is necessary to convert the input decimal numbers
to binary, to perform all calculations with binary numbers, and to convert the
results into decimal. This may be an efficient method in applications requiring

SECTION 10-6 Decimal Arithmetic Unit 365

Chapter10.qxd 2/2/2007 6:38 PM Page 365

EON
PreMedia

CONFIRMING PGS

366 CHAPTER TEN Computer Arithmetic

Divisor in BR
Dividend in AC

END
(Quotient is in QR)

Divide by
zero

Divide magnitude of
mantissas as in Fig. 10-13

Q s ← As ⊕ Bs
Q ← 0
SC ← n � 1

Q R ← 0

BR

AC

� 0

� 0

� 1 � 0
A � BA � B

� 0

� 0

E

EA ← A � B— � 1

a ← a � b—
� 1

a ← a � bias

q ← a

A ← A � BA ← A � B

shr A
a ← a � 1

Figure 10-17 Division of floating-point numbers.

Chapter10.qxd 2/2/2007 6:38 PM Page 366

EON
PreMedia

CONFIRMING PGS

a large number of calculations and a relatively smaller amount of input and
output data. When the application calls for a large amount of input–output
and a relatively smaller number of arithmetic calculations, it becomes con-
venient to do the internal arithmetic directly with the decimal numbers.
Computers capable of performing decimal arithmetic must store the decimal
data in binary-coded form. The decimal numbers are then applied to a deci-
mal arithmetic unit capable of executing decimal arithmetic microoperations.

Electronic calculators invariably use an internal decimal arithmetic unit
since inputs and outputs are frequent. There does not seem to be a reason for
converting the keyboard input numbers to binary and again converting the
displayed results to decimal, since this process requires special circuits and
also takes a longer time to execute. Many computers have hardware for arith-
metic calculations with both binary and decimal data. Users can specify by
programmed instructions whether they want the computer to perform calcu-
lations with binary or decimal data.

A decimal arithmetic unit is a digital function that performs decimal
microoperations. It can add or subtract decimal numbers, usually by forming
the 9’s or 10’s complement of the subtrahend. The unit accepts coded decimal
numbers and generates results in the same adopted binary code. A single-stage
decimal arithmetic unit consists of nine binary input variables and five binary
output variables, since a minimum of four bits is required to represent each
coded decimal digit. Each stage must have four inputs for the augend digit,
four inputs for the addend digit, and an input-carry. The outputs include four
terminals for the sum digit and one for the output-carry. Of course, there is a
wide variety of possible circuit configurations dependent on the code used to
represent the decimal digits.

BCD Adder
Consider the arithmetic addition of two decimal digits in BCD, together with
a possible carry from a previous stage. Since each input digit does not exceed
9, the output sum cannot be greater than 9 � 9 � 1 � 19, the 1 in the sum
being an input-carry. Suppose that we apply two BCD digits to a 4-bit binary
adder. The adder will form the sum in binary and produce a result that may
range from 0 to 19. These binary numbers are listed in Table 10-4 and are
labeled by symbols K, Z8, Z4, Z2, and Z1. K is the carry and the subscripts
under the letter Z represent the weights 8, 4, 2, and 1 that can be assigned to
the four bits in the BCD code. The first column in the table lists the binary
sums as they appear in the outputs of a 4-bit binary adder. The output sum of
two decimal numbers must be represented in BCD and should appear in the
form listed in the second column of the table. The problem is to find a simple
rule by which the binary number in the first column can be converted to the
correct BCD digit representation of the number in the second column.

In examining the contents of the table, it is apparent that when the
binary sum is equal to or less than 1001, the corresponding BCD number is

SECTION 10-6 Decimal Arithmetic Unit 367

Chapter10.qxd 2/2/2007 6:38 PM Page 367

EON
PreMedia

CONFIRMING PGS

identical and therefore no conversion is needed. When the binary sum is
greater than 1001, we obtain a nonvalid BCD representation. The addition of
binary 6 (0110) to the binary sum converts it to the correct BCD representa-
tion and also produces an output-carry as required.

One method of adding decimal numbers in BCD would be to employ
one 4-bit binary adder and perform the arithmetic operation one digit at a
time. The low-order pair of BCD digits is first added to produce a binary sum.
If the result is equal or greater than 1010, it is corrected by adding 0110 to the
binary sum. This second operation will automatically produce an output-carry
for the next pair of significant digits. The next higher-order pair of digits,
together with the input-carry, is then added to produce their binary sum. If
this result is equal to or greater than 1010, it is corrected by adding 0110. The
procedure is repeated until all decimal digits are added.

The logic circuit that detects the necessary correction can be derived
from the table entries. It is obvious that a correction is needed when the binary
sum has an output carry K � 1. The other six combinations from 1010 to 1111
that need a correction have a 1 in position Z8. To distinguish them from
binary 1000 and 1001 which also have a 1 in position Z8, we specify further

368 CHAPTER TEN Computer Arithmetic

TABLE 10-4 Derivation of BCD Adder

Binary Sum BCD Sum

K Z8 Z4 Z2 Z1 C S8 S4 S2 S1 Decimal

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 2
0 0 0 1 1 0 0 0 1 1 3
0 0 1 0 0 0 0 1 0 0 4
0 0 1 0 1 0 0 1 0 1 5
0 0 1 1 0 0 0 1 1 0 6
0 0 1 1 1 0 0 1 1 1 7
0 1 0 0 0 0 1 0 0 0 8
0 1 0 0 1 0 1 0 0 1 9

0 1 0 1 0 1 0 0 0 0 10
0 1 0 1 1 1 0 0 0 1 11
0 1 1 0 0 1 0 0 1 0 12
0 1 1 0 1 1 0 0 1 1 13
0 1 1 1 0 1 0 1 0 0 14
0 1 1 1 1 1 0 1 0 1 15
1 0 0 0 0 1 0 1 1 0 16
1 0 0 0 1 1 0 1 1 1 17
1 0 0 1 0 1 1 0 0 0 18
1 0 0 1 1 1 1 0 0 1 19

Chapter10.qxd 2/2/2007 6:38 PM Page 368

EON
PreMedia

CONFIRMING PGS

that either Z4 or Z2 must have a 1. The condition for a correction and an out-
put-carry can be expressed by the Boolean function

C � K � Z8 Z4 � Z8 Z2

When C � 1, it is necessary to add 0110 to the binary sum and provide an
output-carry for the next stage.

A BCD adder is a circuit that adds two BCD digits in parallel and pro-
duces a sum digit also in BCD. A BCD adder must include the correction logic
in its internal construction. To add 0110 to the binary sum, we use a second
4-bit binary adder as shown in Fig. 10-18. The two decimal digits, together
with the input-carry, are first added in the top 4-bit binary adder to produce
the binary sum. When the output-carry is equal to 0, nothing is added to the
binary sum. When it is equal to 1, binary 0110 is added to the binary sum
through the bottom 4-bit binary adder. The output-carry generated from the
bottom binary-adder may be ignored, since it supplies information already
available in the output-carry terminal.

SECTION 10-6 Decimal Arithmetic Unit 369

Addend

K
Z8 Z4 Z2 Z1

S8 S4 S2 S1

Augend

4-bit binary adderCarry
out

Carry
in

Output
carry

“0”

4-bit binary adder

Figure 10-18 Block diagram of BCD adder.

Chapter10.qxd 2/2/2007 6:38 PM Page 369

EON
PreMedia

CONFIRMING PGS

A decimal parallel-adder that adds n decimal digits needs n BCD adder
stages with the output-carry from one stage connected to the input-carry of the
next-higher-order stage. To achieve shorter propagation delays, BCD adders
include the necessary circuits for carry look-ahead. Furthermore, the adder
circuit for the correction does not need all four full-adders, and this circuit can
be optimized.

BCD Subtraction
A straight subtraction of two decimal numbers will require a subtractor circuit
that will be somewhat different from a BCD adder. It is more economical to
perform the subtraction by taking the 9’s or 10’s complement of the subtrahend
and adding it to the minuend. Since the BCD is not a self-complementing code,
the 9’s complement cannot be obtained by complementing each bit in the
code. It must be formed by a circuit that subtracts each BCD digit from 9.

The 9’s complement of a decimal digit represented in BCD may be
obtained by complementing the bits in the coded representation of the digit
provided a correction is included. There are two possible correction methods.
In the first method, binary 1010 (decimal 10) is added to each complemented
digit and the carry discarded after each addition. In the second method,
binary 0110 (decimal 6) is added before the digit is complemented. As a
numerical illustration, the 9’s complement of BCD 0111 (decimal 7) is com-
puted by first complementing each bit to obtain 1000. Adding binary 1010 and
discarding the carry, we obtain 0010 (decimal 2). By the second method, we
add 0110 to 0111 to obtain 1101. Complementing each bit, we obtain the
required result of 0010. Complementing each bit of a 4-bit binary number N
is identical to the subtraction of the number from 1111 (decimal 15). Adding
the binary equivalent of decimal 10 gives 15 � N � 10 � 9 � N � 16. But
16 signifies the carry that is discarded, so the result is 9 � N as required.
Adding the binary equivalent of decimal 6 and then complementing gives
15 � (N � 6) � 9 � N as required.

The 9’s complement of a BCD digit can also be obtained through a com-
binational circuit. When this circuit is attached to a BCD adder, the result is a
BCD adder/subtractor. Let the subtrahend (or addend) digit be denoted by the
four binary variables B8, B4, B2, and B1. Let M be a mode bit that controls the
add/subtract operation. When M � 0, the two digits are added; when M � 1,
the digits are subtracted. Let the binary variables x8, x4, x2, and x1 be the out-
puts of the 9’s complementer circuit. By an examination of the truth table for
the circuit, it may be observed (see Prob. 10-30) that B1 should always be com-
plemented; B2 is always the same in the 9’s complement as in the original
digit; x4 is 1 when the exclusive-OR of B2 and B4 is 1; and x8 is 1 when B8 B4
B2 � 000. The Boolean functions for the 9’s complementer circuit are

x1 � B1M� � B�1M
x2 � B2

370 CHAPTER TEN Computer Arithmetic

Chapter10.qxd 2/2/2007 6:38 PM Page 370

EON
PreMedia

CONFIRMING PGS

x4 � B4M� � (B�4B2 � B4B�2)M
x8 � B8M� � B�8B�4B�2M

From these equations we see that x � B when M � 0. When M � 1, the x out-
puts produce the 9’s complement of B.

One stage of a decimal arithmetic unit that can add or subtract two BCD
digits is shown in Fig. 10-19. It consists of a BCD adder and a 9’s comple-
menter. The mode M controls the operation of the unit. With M � 0, the S out-
puts form the sum of A and B. With M � 1, the S outputs form the sum of A
plus the 9’s complement of B. For numbers with decimal digits we need n such
stages. The output carry Ci � 1 from one stage must be connected to the input
carry Ci of the next-higher-order stage. The best way to subtract the two dec-
imal numbers is to let M � 1 and apply a 1 to the input carry C1 of the first
stage. The outputs will form the sum of A plus the 10’s complement of B,
which is equivalent to a subtraction operation if the carry-out of the last stage
is discarded.

10-7 Decimal Arithmetic Operations
The algorithms for arithmetic operations with decimal data are similar to the
algorithms for the corresponding operations with binary data. In fact, except
for a slight modification in the multiplication and division algorithms, the

SECTION 10-7 Decimal Arithmetic Operations 371

B8 B4 B2 B1

S8 S4 S2 S1

x8

Ci � 1 Ci

M
BCD 9’s

complementer

BCD adder (Fig. 10-18)

x4 x2 x1 A8 A4 A2 A1

Figure 10-19 One stage of a decimal arithmetic unit.

Chapter10.qxd 2/2/2007 6:38 PM Page 371

EON
PreMedia

CONFIRMING PGS

same flowcharts can be used for both types of data provided that we interpret
the microoperation symbols properly. Decimal numbers in BCD are stored in
computer registers in groups of four bits. Each 4-bit group represents a deci-
mal digit and must be taken as a unit when performing decimal microopera-
tions.

For convenience, we will use the same symbols for binary and decimal
arithmetic microoperations but give them a different interpretation. As
shown in Table 10-5, a bar over the register letter symbol denotes the 9’s com-
plement of the decimal number stored in the register. Adding 1 to the 9’s
complement produces the 10’s complement. Thus, for decimal numbers, the
symbol A ← A � B— � 1 denotes a transfer of the decimal sum formed by
adding the original content A to the 10’s complement of B. The use of identical
symbols for the 9’s complement and the 1’s complement may be confusing if
both types of data are employed in the same system. If this is the case, it may
be better to adopt a different symbol for the 9’s complement. If only one type
of data is being considered, the symbol would apply to the type of data used.

Incrementing or decrementing a register is the same for binary and dec-
imal except for the number of states that the register is allowed to have.
A binary counter goes through 16 states, from 0000 to 1111, when incre-
mented. A decimal counter goes through 10 states from 0000 to 1001 and back
to 0000, since 9 is the last count. Similarly, a binary counter sequences from
1111 to 0000 when decremented. A decimal counter goes from 1001 to 0000.

A decimal shift right or left is preceded by the letter d to indicate a shift
over the four bits that hold the decimal digits. As a numerical illustration con-
sider a register A holding decimal 7860 in BCD. The bit pattern of the 12 flip-
flops is

0111 1000 0110 0000

The microoperation dshr A shifts the decimal number one digit to the right to
give 0786. This shift is over the four bits and changes the content of the register
into

0000 0111 1000 0110

372 CHAPTER TEN Computer Arithmetic

TABLE 10-5 Decimal Arithmetic Microoperation Symbols

Symbolic Designation Description

A ← A � B Add decimal numbers and transfer sum into A
B� 9’s complement of B
A ← A � B� � 1 Content of A plus 10’s complement of B into A
Q L ← Q L � 1 Increment BCD number in Q L

dshr A Decimal shift-right register A
dshl A Decimal shift-left register A

Chapter10.qxd 2/2/2007 6:38 PM Page 372

EON
PreMedia

CONFIRMING PGS

Addition and Subtraction
The algorithm for addition and subtraction of binary signed-magnitude num-
bers applies also to decimal signed-magnitude numbers provided that we
interpret the microoperation symbols in the proper manner. Similarly, the
algorithm for binary signed-2’s complement numbers applies to decimal
signed-10’s complement numbers. The binary data must employ a binary
adder and a complementer. The decimal data must employ a decimal arith-
metic unit capable of adding two BCD numbers and forming the 9’s comple-
ment of the subtrahend as shown in Fig. 10-19.

Decimal data can be added in three different ways, as shown in Fig. 10-20.
The parallel method uses a decimal arithmetic unit composed of as many
BCD adders as there are digits in the number. The sum is formed in parallel
and requires only one microoperation. In the digit-serial bit-parallel method,
the digits are applied to a single BCD adder serially, while the bits of each
coded digit are transferred in parallel. The sum is formed by shifting the dec-
imal numbers through the BCD adder one at a time. For k decimal digits, this
configuration requires k microoperations, one for each decimal shift. In the all
serial adder, the bits are shifted one at a time through a full-adder. The binary
sum formed after four shifts must be corrected into a valid BCD digit. This
correction, discussed in Sec. 10-6, consists of checking the binary sum. If it is
greater than or equal to 1010, the binary sum is corrected by adding to it 0110
and generating a carry for the next pair of digits.

The parallel method is fast but requires a large number of adders. The
digit-serial bit-parallel method requires only one BCD adder, which is shared
by all the digits. It is slower than the parallel method because of the time
required to shift the digits. The all serial method requires a minimum amount
of equipment but is very slow.

Multiplication
The multiplication of fixed-point decimal numbers is similar to binary except
for the way the partial products are formed. A decimal multiplier has digits
that range in value from 0 to 9, whereas a binary multiplier has only 0 and
1 digits. In the binary case, the multiplicand is added to the partial product if
the multiplier bit is 1. In the decimal case, the multiplicand must be multiplied
by the digit multiplier and the result added to the partial product. This opera-
tion can be accomplished by adding the multiplicand to the partial product a
number of times equal to the value of the multiplier digit.

The registers organization for the decimal multiplication is shown in
Fig. 10-21. We are assuming here four-digit numbers, with each digit occupy-
ing four bits, for a total of 16 bits for each number. There are three registers,
A , B , and Q , each having a corresponding sign flip-flop As, Bs, and Q s.

SECTION 10-7 Decimal Arithmetic Operations 373

Chapter10.qxd 2/2/2007 6:38 PM Page 373

EON
PreMedia

CONFIRMING PGS

374 CHAPTER TEN Computer Arithmetic

(a) Parallel decimal addition: 624 + 879 = 1503

1 0 0 0

BCD adder BCD adder BCD adder

0 1 1 0

0 11 0 1

1 0 0 1
0 1 0 0

0 0 1 1

0

1

1 1 1
0 0 1 0

0 0 0 0

1

(b) Digit-serial, bit-parallel decimal addition

BCD
adder

1
0
0
0

0

Augend

Addend

1
1
1

1
0
0
1

0
1
1
0

0
0
1
0

0
1
0
0

0

Sum

0
1
1

1

Carry

Augend

Addend

0 1 1 0 0 0 1 0 0 1 0 0 S

C

FA

Correction

Carry

Sum

1 0 0 0 0 1 1 1 1 0 0 1

Figure 10-20 Three ways of adding decimal numbers.

Chapter10.qxd 2/2/2007 6:38 PM Page 374

EON
PreMedia

CONFIRMING PGS

Registers A and B have four more bits designated by Ae and Be that provide
an extension of one more digit to the registers. The BCD arithmetic unit adds
the five digits in parallel and places the sum in the five-digit A register. The
end-carry goes to flip-flop E. The purpose of digit Ae is to accommodate an
overflow while adding the multiplicand to the partial product during multi-
plication. The purpose of digit Be is to form the 9’s complement of the divi-
sor when subtracted from the partial remainder during the division
operation. The least significant digit in register Q is denoted by Q L. This digit
can be incremented or decremented.

A decimal operand coming from memory consists of 17 bits. One bit (the
sign) is transferred to Bs and the magnitude of the operand is placed in the
lower 16 bits of B. Both Be and Ae are cleared initially. The result of the oper-
ation is also 17 bits long and does not use the Ae part of the A register.

The decimal multiplication algorithm is shown in Fig. 10-22. Initially, the
entire A register and Be are cleared and the sequence counter SC is set to a
number k equal to the number of digits in the multiplier. The low-order digit
of the multiplier in Q L is checked. If it is not equal to 0, the multiplicand in B
is added to the partial product in A once and Q L is decremented. Q L is
checked again and the process is repeated until it is equal to 0. In this way, the
multiplicand in B is added to the partial product a number of times equal to
the multiplier digit. Any temporary overflow digit will reside in Ae and can
range in value from 0 to 9.

Next, the partial product and the multiplier are shifted once to the right.
This places zero in Ae and transfers the next multiplier quotient into Q L. The
process is then repeated k times to form a double-length product in AQ.

SECTION 10-7 Decimal Arithmetic Operations 375

Bs

Q L

Q s

SC

Q

E

As

Be 103 102

BCD arithmetic unit

101 100

Ae 103 102 101 100 103 102 101

Increment
Decrement

k � 4

B

A

Figure 10-21 Registers for decimal arithmetic multiplication and division.

Chapter10.qxd 2/2/2007 6:38 PM Page 375

EON
PreMedia

CONFIRMING PGS

Division
Decimal division is similar to binary division except of course that the quo-
tient digits may have any of the 10 values from 0 to 9. In the restoring division
method, the divisor is subtracted from the dividend or partial remainder as
many times as necessary until a negative remainder results. The correct
remainder is then restored by adding the divisor. The digit in the quotient
reflects the number of subtractions up to but excluding the one that caused the
negative difference.

The decimal division algorithm is shown in Fig. 10-23. It is similar to
the algorithm with binary data except for the way the quotient bits are formed.
The dividend (or partial remainder) is shifted to the left, with its most significant
digit placed in Ae. The divisor is then subtracted by adding its 10’s complement
value. Since Be is initially cleared, its complement value is 9 as required. The
carry in E determines he relative magnitude of A and B. If E � 0, it signifies

376 CHAPTER TEN Computer Arithmetic

Multiplicand in B
Multiplier in Q

END
(Product is in AQ)

Multiply

As ← Q s ⊕ Bs
A ← 0, Be ← 0
SC ← k

dshr AQ
SC ← SC � 1

SC

Q L

� 0

� 0

� 0

� 0

A ← A � B
Q L ← Q L � 1

Figure 10-22 Flowchart for decimal multiplication.

Chapter10.qxd 2/2/2007 6:38 PM Page 376

EON
PreMedia

CONFIRMING PGS

that A � B. In this case the divisor is added to restore the partial remain-
der and Q L stays at 0 (inserted there during the shift). If E � 1, it signifies that
A � B. The quotient digit in Q L is incremented once and the divisor sub-
tracted again. This process is repeated until the subtraction results in a nega-
tive difference which is recognized by E being 0. When this occurs, the
quotient digit is not incremented but the divisor is added to restore the posi-
tive remainder. In this way, the quotient digit is made equal to the number of
times that the partial remainder “goes” into the divisor.

SECTION 10-7 Decimal Arithmetic Operations 377

Divide

Divisor in B
Dividend in AQ

dshl AQ

A < B A � B

END
(Quotient is in Q)

(Remainder is in A)

E

E

Check for overflow

Q S ← AS ⊕ BS
SC ← k , Be ← 0

SC ← SC � 1

SC

Q L ← Q L � 1

� 1

� 1

� 0

� 0

� 0� 0

EA ← A � B— � 1

EA ← A � B— � 1

A ← A � B

Figure 10-23 Flowchart for decimal division.

Chapter10.qxd 2/2/2007 6:38 PM Page 377

EON
PreMedia

CONFIRMING PGS

The partial remainder and the quotient bits are shifted once to the left
and the process is repeated k times to form k quotient digits. The remainder is
then found in register A and the quotient is in register Q. The value of E is neg-
lected.

Floating-Point Operations
Decimal floating-point arithmetic operations follow the same procedures as
binary operations. The algorithms in Sec. 10-5 can be adopted for decimal
data provided that the microoperation symbols are interpreted correctly. The
multiplication and division of the mantissas must be done by the methods
described above.

378 CHAPTER TEN Computer Arithmetic

PROBLEMS

10-1. The complementer shown in Fig. 10-1 is not needed if instead of perform-
ing A � B— � 1 we perform B � A— (B plus the 1’s complement of A). Derive
an algorithm in flowchart form for addition and subtraction of fixed-point
binary numbers in signed-magnitude representation with the magnitudes
subtracted by the two microoperations A ← A— and EA ← A � B.

10-2. Mark each individual path in the flowchart of Fig. 10-2 by a number and
then indicate the overall path that the algorithm takes when the following
signed-magnitude numbers are computed. In each case give the value of
AVF. The leftmost bit in the following numbers represents the sign bit.
a. 0 101101 � 0 011111
b. 1 011111 � 1 101101
c. 0 101101 � 0 011111
d. 0 101101 � 0 101101
e. 1 011111 � 0 101101

10-3. Perform the arithmetic operations below with binary numbers and with neg-
ative numbers in signed-2’s complement representation. Use seven bits to
accommodate each number together with its sign. In each case, determine
if there is an overflow by checking the carries into and out of the sign bit
position.
a. (�35) � (�40)
b. (�35) � (�40)
c. (�35) � (�40)

10-4. Consider the binary numbers when they are in signed-2’s complement rep-
resentation. Each number has n bits: one for the sign and k � n � 1 for the
magnitude. A negative number �X is represented as 2k � (2k � X), where
the first 2k designates the sign bit and (2k � X) is the 2’s complement of X.
A positive number is represented as 0 � X , where the 0 designates the sign
bit, and X, the k-bit magnitude. Using these generalized symbols, prove that
the sum (�X) � (�Y) can be formed by adding the numbers including

Chapter10.qxd 2/2/2007 6:38 PM Page 378

EON
PreMedia

CONFIRMING PGS

their sign bits and discarding the carry-out of the sign-bit position. In other
words, prove the algorithm for adding two binary numbers in signed-2’s
complement representation.

10-5. Formulate a hardware procedure for detecting an overflow by comparing
the sign of the sum with the signs of the augend and addend. The numbers
are in signed-2’s complement representation.

10-6. a. Perform the operation (�9) � (�6) � —15 with binary numbers in
signed-1’s complement representation using only five bits to represent
each number (including the sign). Show that the overflow detection pro-
cedure of checking the inequality of the last two carries fails in this case.

b. Suggest a modified procedure for detecting an overflow when signed-1’s
complement numbers are used.

10-7. Derive an algorithm in flowchart form for adding and subtracting two fixed-
point binary numbers when negative numbers are in signed-1’s complement
representation.

10-8. Prove that the multiplication of two n-digit numbers in base r gives a prod-
uct no more than 2n digits in length. Show that this statement implies that
no overflow can occur in the multiplication operation.

10-9. Show the contents of registers E , A , Q , and SC (as in Table 10-2) during the
process of multiplication of two binary numbers, 11111 (multiplicand) and
10101 (multiplier). The signs are not included.

10-10. Show the contents of registers E, A, Q , and SC (as in Fig. 10-12) during the
process of division of (a) 10100011 by 1011; (b) 00001111 by 0011. (Use a div-
idend of eight bits.)

10-11. Show that adding B after the operation A � B
—

� 1 restores the original
value of A. What should be done with the end carry?

10-12. Why should the sign of the remainder after a division be the same as the
sign of the dividend?

10-13. Design an array multiplier that multiplies two 4-bit numbers. Use AND
gates and binary adders.

10-14. Show the step-by-step multiplication process using Booth algorithm (as in
Table 10-3) when the following binary numbers are multiplied. Assume
5-bit registers that hold signed numbers. The multiplicand in both cases
is �15.
a. (�15) 	 (�13)
b. (�15) 	 (�13)

10-15. Derive an algorithm in flowchart form for the nonrestoring method of fixed-
point binary division.

10-16. Derive an algorithm for evaluating the square root of a binary fixed-point
number.

10-17. A binary floating-point number has seven bits for a biased exponent. The
constant used for the bias is 64.
a. List the biased representation of all exponents from —64 to �63.
b. Show that a 7-bit magnitude comparator can be used to compare the rel-

ative magnitude of the two exponents.

SECTION 10-7 Decimal Arithmetic Operations 379

Chapter10.qxd 2/2/2007 6:38 PM Page 379

EON
PreMedia

CONFIRMING PGS

c. Show that after the addition of two biased exponents it is necessary to
subtract 64 in order to have a biased exponents sum. How would you
subtract 64 by adding its 2’s complement value?

d. Show that after the subtraction of two biased exponents it is necessary to
add 64 in order to have a biased exponent difference.

10-18. Derive an algorithm in flowchart form for the comparison of two signed
binary numbers when negative numbers are in signed-2’s complement rep-
resentation:
a. By means of a subtraction operation with the signed-2’s complement

numbers.
b. By scanning and comparing pairs of bits from left to right.

10-19. Repeat Prob. 10-18 for signed-magnitude binary numbers.
10-20. Let n be the number of bits of the mantissa in a binary floating-point num-

ber. When the mantissas are aligned during the addition or subtraction the
exponent difference may be greater than n — 1. If this occurs, the mantissa
with the smaller exponent is shifted entirely out of the register. Modify the
mantissa alignment in Fig. 10-15 by including a sequence counter SC that
counts the number of shifts. If the number of shifts is greater than n — 1, the
larger number is then used to determine the result.

10-21. The procedure for aligning mantissas during addition or subtraction of
floating-point numbers can be stated as follows: Subtract the smaller expo-
nent from the larger and shift right the mantissa having the smaller expo-
nent a number of places equal to the difference between the exponents.
The exponent of the sum (or difference) is equal to the larger exponents.
Without using a magnitude comparator, assuming biased exponents, and
taking into account that only the AC can be shifted, derive an algorithm in
flowchart form for aligning the mantissas and placing the larger exponent
in the AC.

10-22. Show that there can be no mantissa overflow after a multiplication
operation.

10-23. Show that the division of two normalized floating-point numbers with frac-
tional mantissas will always result in a normalized quotient provided a div-
idend alignment is carried out prior to the division operation.

10-24. Extend the flowchart of Fig. 10-17 to provide a normalized floating-point
remainder in the AC. The mantissa should be a fraction.

10-25. The algorithms for the floating-point arithmetic operations in Sec. 10-5 neg-
lect the possibility of exponent overflow or underflow.
a. Go over the three flowcharts and find where an exponent overflow may

occur.
b. Repeat (a) for exponent underflow. An exponent underflow occurs if the

exponent is more negative than the smallest number that can be accom-
modated in the register.

c. Show how an exponent overflow or underflow can be detected by the
hardware.

10-26. If we assume integer representation for the mantissa of floating-point
numbers, we encounter certain scaling problems during multiplication and

380 CHAPTER TEN Computer Arithmetic

Chapter10.qxd 2/2/2007 6:38 PM Page 380

EON
PreMedia

CONFIRMING PGS

division. Let the number of bits in the magnitude part of the mantissa be
(n � 1). For integer representation:
a. Show that if a single-precision product is used, (n � 1) must be added to

the exponent product in the AC.
b. Show that if a single-precision mantissa dividend is used, (n — 1) must be

subtracted from the exponent dividend when Q is cleared.
10-27. Show the hardware to be used for the addition and subtraction of two deci-

mal numbers in signed-magnitude representation. Indicate how an overflow
is detected.

10-28. Show that 673 — 356 can be computed by adding 673 to the 10’s comple-
ment of 356 and discarding the end carry. Draw the block diagram of a
three-stage decimal arithmetic unit and show how this operation is imple-
mented. List all input bits and output bits of the unit.

10-29. Show that the lower 4-bit binary adder in Fig. 10-1 can be replaced by one
full-adder and two half-adders.

10-30. Using combinational circuit design techniques, derive the Boolean functions
for the BCD 9’s complementer of Fig. 10-19. Draw the logic diagram.

10-31. It is necessary to design an adder for two decimal digits represented in the
excess-3 code (Table 3-6). Show that the correction after adding two digits
with a 4-bit binary adder is as follows:
a. The output carry is equal to the uncorrected carry.
b. If output carry � 1, add 0011.
c. If output carry � 0, add 1101 and ignore the carry from this addition.

Show that the excess-3 adder can be constructed with seven full-adders
and two inverters.

10-32. Derive the circuit for a 9’s complementer when decimal digits are repre-
sented in the excess-3 code (Table 3-6). A mode control input determines
whether the digit is complemented or not. What is the advantage of using
this code over BCD?

10-33. Show the hardware to be used for the addition and subtraction of two dec-
imal numbers with negative numbers in signed-10’s complement represen-
tation. Indicate how an overflow is detected. Derive the flowchart algorithm
and try a few numbers to convince yourself that the algorithm produces cor-
rect results.

10-34. Show the content of registers A, B, Q , and SC during the decimal multipli-
cation (Fig. 10-22) of (a) 470 	 152 and (b) 999 	 199. Assume three-digit
registers and take the second number as the multiplier.

10-35. Show the content of registers A, E, Q , and SC during the decimal division
(Fig. 10-23) of 1680/32. Assume two-digit registers.

10-36. Show that subregister Ae in Fig. 10-21 is zero at the termination of (a) the dec-
imal multiplication as specified in Fig. 10-22, and (b) the decimal division as
specified in Fig. 10-23.

10-37. Change the floating-point arithmetic algorithms in Sec. 10-5 from binary to
decimal data. In a table, list how each microoperation symbol should be
interpreted.

SECTION 10-7 Decimal Arithmetic Operations 381

Chapter10.qxd 2/2/2007 6:38 PM Page 381

EON
PreMedia

CONFIRMING PGS

1. Blaauw, G., Digital Systems Implementation. Englewood Cliffs, NJ: Prentice Hall,
1976.

2. Cavanagh, J. J. F., Digital Computer Arithmetic. New York: McGraw-Hill, 1984.
3. Hamacher, V. C., Z. G. Vranesic, and S. G. Zaky, Computer Organization, 3rd ed.

New York: McGraw-Hill, 1990.
4. Hays, J. F., Computer Architecture and Organization, 2nd ed. New York: McGraw-

Hill, 1988.
5. Hill, F. J., and G. R. Peterson, Digital Systems: Hardware Organization and Design,

3rd ed. New York: John Wiley, 1987.
6. Hwang, K., Computer Arithmetic. New York: John Wiley, 1979.
7. Kulisch, V. W., and W. L. Miranker, Computer Arithmetic in Theory and Practice. New

York: Academic Press, 1980.
8. Schmid, H., Decimal Arithmetic. New York: John Wiley, 1979.

382 CHAPTER TEN Computer Arithmetic

REFERENCES

Chapter10.qxd 2/2/2007 6:38 PM Page 382

EON
PreMedia

CONFIRMING PGS

IN THIS CHAPTER

11-1 Peripheral Devices
11-2 Input–Output Interface
11-3 Asynchronous Data Transfer
11-4 Modes of Transfer
11-5 Priority Interrupt
11-6 Direct Memory Access
11-7 Input–Output Processor
11-8 Serial Communication

11-1 Peripheral Devices
The input–output subsystem of a computer, referred to as I/O, provides an
efficient mode of communication between the central system and the outside
environment. Programs and data must be entered into computer memory for
processing and results obtained from computations must be recorded or dis-
played for the user. A computer serves no useful purpose without the ability
to receive information from an outside source and to transmit results in a
meaningful form.

The most familiar means of entering information into a computer is
through a typewriter-like keyboard that allows a person to enter alphanumeric
information directly. Every time a key is depressed, the terminal sends a binary
coded character to the computer. The fastest possible speed for entering infor-
mation this way depends on the person’s typing speed. On the other hand, the
central processing unit is an extremely fast device capable of performing oper-
ations at very high speed. When input information is transferred to the proces-
sor via a slow keyboard, the processor will be idle most of the time while
waiting for the information to arrive. To use a computer efficiently, a large

383

C H A P T E R E L E V E N

Input–Output
Organization

I/O

Chapter11.qxd 2/2/2007 6:40 PM Page 383

EON
PreMedia

CONFIRMING PGS

amount of programs and data must be prepared in advance and transmitted
into a storage medium such as magnetic tapes or disks. The information in the
disk is then transferred into computer memory at a rapid rate. Results of pro-
grams are also transferred into a high-speed storage, such as disks, from which
they can be transferred later into a printer to provide a printed output of results.

Devices that are under the direct control of the computer are said to be
connected on-line. These devices are designed to read information into or out
of the memory unit upon command from the CPU and are considered to be
part of the total computer system. Input or output devices attached to the com-
puter are also called peripherals. There are three types of peripherals such as
input, output, and input–output peripherals. These peripherals may be analog
or digital and serial or parallel. Among the most common peripherals are key-
boards, display units, and printers. Peripherals that provide auxiliary storage
for the system are magnetic disks and tapes. Peripherals are electromechani-
cal and electromagnetic devices of some complexity. Only a very brief dis-
cussion of their function will be given here without going into detail of their
internal construction.

Video monitors are the most commonly used peripherals. They consist
of a keyboard as the input device and a display unit as the output device.
There are different types of video monitors, but the most popular use a cath-
ode ray tube (CRT). The CRT contains an electronic gun that sends an elec-
tronic beam to a phosphorescent screen in front of the tube. The beam can be
deflected horizontally and vertically. To produce a pattern on the screen, a
grid inside the CRT receives a variable voltage that causes the beam to hit the
screen and make it glow at selected spots. Horizontal and vertical signals
deflect the beam and make it sweep across the tube, causing the visual pattern
to appear on the screen. A characteristic feature of display devices is a cursor
that marks the position in the screen where the next character will be inserted.
The cursor can be moved to any position in the screen, to a single character,
the beginning of a word, or to any line. Edit keys add or delete information
based on the cursor position. The display terminal can operate in a single-
character mode where all characters entered on the screen through the key-
board are transmitted to the computer simultaneously. In the block mode, the
edited text is first stored in a local memory inside the terminal. The text is
transferred to the computer as a block of data.

Printers provide a permanent record on paper of computer output data
or text. There are three basic types of character printers: daisywheel, dot
matrix, and laser printers. The daisywheel printer contains a wheel with the
characters placed along the circumference. To print a character, the wheel
rotates to the proper position and an energized magnet then presses the letter
against the ribbon. The dot matrix printer contains a set of dots along the
printing mechanism. For example, a 5 � 7 dot matrix printer that prints 80
characters per line has seven horizontal lines, each consisting of 5 � 80 � 400
dots. Each dot can be printed or not, depending on the specific characters that
are printed on the line. The laser printer uses a rotating photographic drum

384 CHAPTER ELEVEN Input–Output Organization

peripheral

monitor and
keyboard

printer

Chapter11.qxd 2/2/2007 6:40 PM Page 384

EON
PreMedia

CONFIRMING PGS

that is used to imprint the character images. The pattern is then transferred
onto paper in the same manner as a copying machine.

Magnetic tapes are used mostly for storing files of data: for example, a
company’s payroll record. Access is sequential and consists of records that can
be accessed one after another as the tape moves along a stationary read–write
mechanism. It is one of the cheapest and slowest methods for storage and has
the advantage that tapes can be removed when not in use. Magnetic disks have
high-speed rotational surfaces coated with magnetic material. Access is achieved
by moving a read–write mechanism to a track in the magnetized surface. Disks
are used mostly for bulk storage of programs and data. Tapes and disks are dis-
cussed further in Sec. 12-1 in conjunction with their role as auxiliary memory.

Other input and output devices encountered in computer systems are
digital incremental plotters, optical and magnetic character readers, analog-to-
digital converters, and various data acquisition equipment. Not all input
comes from people, and not all output is intended for people. Computers are
used to control various processes in real time, such as machine tooling, assem-
bly line procedures, and chemical and industrial processes. For such applica-
tions, a method must be provided for sensing status conditions in the process
and sending control signals to the process being controlled.

The input–output organization of a computer is a function of the size of
the computer and the devices connected to it. The difference between a small
and a large system is mostly dependent on the amount of hardware the com-
puter has available for communicating with peripheral units and the number
of peripherals connected to the system. Since each peripheral behaves differ-
ently from any other, it would be prohibitive to dwell on the detailed inter-
connections needed between the computer and each peripheral. Certain
techniques common to most peripherals are presented in this chapter.

ASCII Alphanumeric Characters
Input and output devices that communicate with people and the computer are
usually involved in the transfer of alphanumeric information to and from the
device and the computer. The standard binary code for the alphanumeric
characters is ASCII (American Standard Code for Information Interchange).
It uses seven bits to code 128 characters as shown in Table 11-1. The seven bits
of the code are designated by b1 through b7, with b7 being the most significant
bit. The letter A, for example, is represented in ASCII as 1000001 (column
100, row 0001). The ASCII code contains 94 characters that can be printed
and 34 nonprinting characters used for various control functions. The printing
characters consist of the 26 uppercase letters A through Z, the 26 lowercase
letters, the 10 numerals 0 through 9, and 32 special printable characters such
as %, * , and $.

The 34 control characters are designated in the ASCII table with abbrevi-
ated names. They are listed again below the table with their functional names.
The control characters are used for routing data and arranging the printed text

SECTION 11-1 Peripheral Devices 385

magnetic disk

ASCII

magnetic tape

Chapter11.qxd 2/2/2007 6:40 PM Page 385

EON
PreMedia

CONFIRMING PGS

into a prescribed format. There are three types of control characters: format
effectors, information separators, and communication control characters.
Format effectors are characters that control the layout of printing. They include
the familiar typewriter controls, such as backspace (BS), horizontal tabulation
(HT), and carriage return (CR). Information separators are used to separate the
data into divisions like paragraphs and pages. They include characters such as

386 CHAPTER ELEVEN Input–Output Organization

TABLE 11-1 American Standard Code for Information Interchange (ASCII)

b7b6b5

b4b3b2b1 000 001 010 011 100 101 110 111

0000 NUL DLE SP 0 @ P ‘ p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 “ 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EOT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL ETB ’ 7 G W g w
1000 BS CAN (8 H X h x
1001 HT EM) 9 I Y i y
1010 LF SUB * : J Z j z
1011 VT ESC � ; K [k {
1100 FF FS , < L \ l ¦
1101 CR GS � � M] m }
1110 SO RS . > N � n ~
1111 SI US / ? O — o DEL

Control characters

NUL Null DLE Data link escape
SOH Start of heading DC1 Device control 1
STX Start of text DC2 Device control 2
ETX End of text DC3 Device control 3
EOT End of transmission DC4 Device control 4
ENQ Enquiry NAK Negative acknowledge
ACK Acknowledge SYN Synchronous idle
BEL Bell ETB End of transmission block
BS Backspace CAN Cancel
HT Horizontal tab EM End of medium
LF Line feed SUB Substitute
VT Vertical tab ESC Escape
FF Form feed FS File separator
CR Carriage return GS Group separator
SO Shift out RS Record separator
SI Shift in US Unit separator
SP Space DEL Delete

Chapter11.qxd 2/2/2007 6:40 PM Page 386

EON
PreMedia

CONFIRMING PGS

record separator (RS) and file separator (FS). The communication control char-
acters are useful during the transmission of text between remote terminals.
Examples of communication control characters are STX (start of text) and ETX
(end of text), which are used to frame a text message when transmitted through
a communication medium.

ASCII is a 7-bit code, but most computers manipulate an 8-bit quantity
as a single unit called a byte. Therefore, ASCII characters most often are stored
one per byte. The extra bit is sometimes used for other purposes, depending
on the application. For example, some printers recognize 8-bit ASCII charac-
ters with the most significant bit set to 0. Additional 128 8-bit characters with
the most significant bit set to 1 are used for other symbols, such as the Greek
alphabet or italic type font. When used in data communication, the eighth bit
may be employed to indicate the parity of the binary-coded character.

11-2 Input–Output Interface
Input–output interface provides a method for transferring information
between internal storage and external I/O devices. Peripherals connected to a
computer need special communication links for interfacing them with the cen-
tral processing unit. The purpose of the communication link is to resolve the
differences that exist between the central computer and each peripheral. The
major differences are:

1. Peripherals are electromechanical and electromagnetic devices and
their manner of operation is different from the operation of the CPU
and memory, which are electronic devices. Therefore, a conversion of
signal values may be required.

2. The data transfer rate of peripherals is usually slower than the transfer
rate of the CPU, and consequently, a synchronization mechanism may
be needed.

3. Data codes and formats in peripherals differ from the word format in
the CPU and memory.

4. The operating modes of peripherals are different from each other and
each must be controlled so as not to disturb the operation of other
peripherals connected to the CPU.

To resolve these differences, computer systems include special hardware
components between the CPU and peripherals to supervise and synchronize
all input and output transfers. These components are called interface units
because they interface between the processor bus and the peripheral device.
The word “Interface” is a general term for the point of contact between two
parts of a system. In digital computer system the interface is refered as a
complementary set of signal connection points between two parts of a system.
Therefore, “to interface” means to attach two or more components or systems,

SECTION 11-2 Input–Output Interface 387

byte

interface

Chapter11.qxd 2/2/2007 6:40 PM Page 387

EON
PreMedia

CONFIRMING PGS

via their respective interface points for data exchanges between them. Two
main types of interface are CPU interface that corresponds to the system bus
and input–output interface that depends on the nature of input–output device.
To attach an input–output device to CPU and input–output interface, circuit is
placed between the device and the system bus. This circuit is meant for match-
ing the signal formats and timing characteristics of the CPU interface to those
of the input–output device interface. The main function of input–output inter-
face circuit are data conversion, synchronization and device selection. Data
conversion refers to conversion between digital and analog signals, and con-
version between serial and parallel data formats. Synchronation refers to
matching of operating speeds of CPU and other peripherals. Device selection
refers to the selection of I/O device by CPU in a queue manner. In addition,
each device may have its own controller that supervises the operations of the
particular mechanism in the peripheral.

I/O Bus and Interface Modules
A typical communication link between the processor and several peripherals is
shown in Fig. 11-1. The I/O bus consists of data lines, address lines, and control
lines. The magnetic disk, printer, and terminal are employed in practically any
general-purpose computer. The magnetic tape is used in some computers for
backup storage. Each peripheral device has associated with it an interface unit.
Each interface decodes the address and control received from the I/O bus, inter-
prets them for the peripheral, and provides signals for the peripheral controller.
It also synchronizes the data flow and supervises the transfer between peripheral
and processor. Each peripheral has its own controller that operates the particular
electromechanical device. For example, the printer controller controls the paper
motion, the print timing, and the selection of printing characters. A controller
may be housed separately or may be physically integrated with the peripheral.

388 CHAPTER ELEVEN Input–Output Organization

Processor

Keyboard
and

display
terminal

Interface Interface

Printer

Interface

Magnetic
disk

Interface

Magnetic
tape

Interface

I/O bus
Data

Address

Control

Figure 11-1 Connection of I/O bus to input–output devices.

Chapter11.qxd 2/2/2007 6:40 PM Page 388

EON
PreMedia

CONFIRMING PGS

The I/O bus from the processor is attached to all peripheral interfaces.
To communicate with a particular device, the processor places a device
address on the address lines. Each interface attached to the I/O bus contains
an address decoder that monitors the address lines. When the interface detects
its own address, it activates the path between the bus lines and the device that
it controls. All peripherals whose address does not correspond to the address
in the bus are disabled by their interface.

At the same time that the address is made available in the address lines,
the processor provides a function code in the control lines. The interface
selected responds to the function code and proceeds to execute it. The
function code is referred to as an I/O command and is in essence an instruc-
tion that is executed in the interface and its attached peripheral unit. The inter-
pretation of the command depends on the peripheral that the processor is
addressing. There are four types of commands that an interface may receive.
They are classified as control, status, data output, and data input.

A control command is issued to activate the peripheral and to inform it
what to do. For example, a magnetic tape unit may be instructed to backspace
the tape by one record, to rewind the tape, or to start the tape moving in the
forward direction. The particular control command issued depends on the
peripheral, and each peripheral receives its own distinguished sequence of
control commands, depending on its mode of operation.

A status command is used to test various status conditions in the interface
and the peripheral. For example, the computer may wish to check the status of
the peripheral before a transfer is initiated. During the transfer, one or more
errors may occur which are detected by the interface. These errors are desig-
nated by setting bits in a status register that the processor can read at certain
intervals.

A data output command causes the interface to respond by transferring data
from the bus into one of its registers. Consider an example with a tape unit. The
computer starts the tape moving by issuing a control command. The processor
then monitors the status of the tape by means of a status command. When the
tape is in the correct position, the processor issues a data output command. The
interface responds to the address and command and transfers the information
from the data lines in the bus to its buffer register. The interface then commu-
nicates with the tape controller and sends the data to be stored on tape.

The data input command is the opposite of the data output. In this case the
interface receives an item of data from the peripheral and places it in its buffer
register. The processor checks if data are available by means of a status com-
mand and then issues a data input command. The interface places the data on
the data lines, where they are accepted by the processor.

I/O versus Memory Bus
In addition to communicating with I/O, the processor must communicate
with the memory unit. Like the I/O bus, the memory bus contains data,

SECTION 11-2 Input–Output Interface 389

control command

I/O command

status

output data

input data

Chapter11.qxd 2/2/2007 6:40 PM Page 389

EON
PreMedia

CONFIRMING PGS

address, and read/write control lines. There are three ways that computer buses
can be used to communicate with memory and I/O:

1. Use two separate buses, one for memory and the other for I/O.
2. Use one common bus for both memory and I/O but have separate con-

trol lines for each.
3. Use one common bus for memory and I/O with common control lines.

In the first method, the computer has independent sets of data, address,
and control buses, one for accessing memory and the other for I/O. This is
done in computers that provide a separate I/O processor (IOP) in addition to
the central processing unit (CPU). The memory communicates with both the
CPU and the IOP through a memory bus. The IOP communicates also with
the input and output devices through a separate I/O bus with its own address,
data and control lines. The purpose of the IOP is to provide an independent
pathway for the transfer of information between external devices and internal
memory. The I/O processor is sometimes called a data channel. In Sec. 11-7
we discuss the function of the IOP in more detail.

Isolated versus Memory-Mapped I/O
Many computers use one common bus to transfer information between memory
or I/O and the CPU. The distinction between a memory transfer and I/O trans-
fer is made through separate read and write lines. The CPU specifies whether the
address on the address lines is for a memory word or for an interface register by
enabling one of two possible read.or write lines. The I/O read and I/O write con-
trol lines are enabled during an I/O transfer. The memory read and memory write
control lines are enabled during a memory transfer. This configuration isolates all
I/O interface addresses from the addresses assigned to memory and is referred
to as the isolated I/O method for assigning addresses in a common bus.

In the isolated I/O configuration, the CPU has distinct input and output
instructions, and each of these instructions is associated with the address of an
interface register. When the CPU fetches and decodes the operation code of
an input or output instruction, it places the address associated with the instruc-
tion into the common address lines. At the same time, it enables the I/O read
(for input) or I/O write (for output) control line. This informs the external
components that are attached to the common bus that the address in the
address lines is for an interface register and not for a memory word. On the
other hand, when the CPU is fetching an instruction or an operand from
memory, it places the memory address on the address lines and enables the
memory read or memory write control line. This informs the external com-
ponents that the address is for a memory word and not for an I/O interface.

The isolated I/O method isolates memory and I/O addresses so that
memory address values are not affected by interface address assignment since
each has its own address space. The other alternative is to use the same

390 CHAPTER ELEVEN Input–Output Organization

IOP

isolated I/O

Chapter11.qxd 2/2/2007 6:40 PM Page 390

EON
PreMedia

CONFIRMING PGS

address space for both memory and I/O. This is the case in computers that
employ only one set of read and write signals and do not distinguish between
memory and I/O addresses. This configuration is referred to as memory-
mapped I/O. The computer treats an interface register as being part of the
memory system. The assigned addresses for interface registers cannot be used
for memory words, which reduces the memory address range available.

In a memory-mapped I/O organization there are no specific input or out-
put instructions. The CPU can manipulate I/O data residing in interface regis-
ters with the same instructions that are used to manipulate memory words. Each
interface is organized as a set of registers that respond to read and write requests
in the normal address space. Typically, a segment of the total address space is
reserved for interface registers, but in general, they can be located at any address
as long as there is not also a memory word that responds to the same address.

Computers with memory-mapped I/O can use memory-type instruc-
tions to access I/O data. It allows the computer to use the same instructions
for either input–output transfers or for memory transfers. The advantage is
that the load and store instructions used for reading and writing from memory
can be used to input and output data from I/O registers. In a typical computer,
there are more memory-reference instructions than I/O instructions. With
memory-mapped I/O all instructions that refer to memory are also available
for I/O.

Example of I/O Interface
An example of an I/O interface unit is shown in block diagram form in
Fig. 11-2. It consists of two data registers called ports, a control register, a status
register, bus buffers, and timing and control circuits. The interface communi-
cates with the CPU through the data bus. The chip select and register select
inputs determine the address assigned to the interface. The I/O read and write
are two control lines that specify an input or output, respectively. The four reg-
isters communicate directly with the I/O device attached to the interface.

The I/O data to and from the device can be transferred into either port
A or port B. The interface may operate with an output device or with an input
device, or with a device that requires both input and output. If the interface is
connected to a printer, it will only output data, and if it services a character
reader, it will only input data. A magnetic disk unit transfers data in both
directions but not at the same time, so the interface can use bidirectional lines.
A command is passed to the I/O device by sending a word to the appropriate
interface register. In a system like this, the function code in the I/O bus is not
needed because control is sent to the control register, status information is
received from the status register, and data are transferred to and from ports
A and B registers. Thus the transfer of data, control, and status information is
always via the common data bus. The distinction between data, control, or sta-
tus information is determined from the particular interface register with which
the CPU communicates.

SECTION 11-2 Input–Output Interface 391

memory-mapped

I/O port

Chapter11.qxd 2/2/2007 6:40 PM Page 391

EON
PreMedia

CONFIRMING PGS

The control register receives control information from the CPU. By load-
ing appropriate bits into the control register, the interface and the I/O device
attached to it can be placed in a variety of operating modes. For example, port
A may be defined as an input port and port B as an output port. A magnetic
tape unit may be instructed to rewind the tape or to start the tape moving in
the forward direction. The bits in the status register are used for status condi-
tions and for recording errors that may occur during the data transfer. For
example, a status bit may indicate that port A has received a new data item
from the I/O device. Another bit in the status register may indicate that a par-
ity error has occurred during the transfer.

The interface registers communicate with the CPU through the bidirec-
tional data bus. The address bus selects the interface unit through the chip

392 CHAPTER ELEVEN Input–Output Organization

Bidirectional

data bus

Chip select

Register select

I/O read

I/O write

To CPU

CS RS1 RS0

None: data bus in high–impedance

Register selected

Port A register

Port B register

Control register

Status register

0 � �

1 0 0

1 0 1

1 1 0

1 1 1

In
te

rn
al

 b
us

Bus
buffers

CS

RS1

RS0

RD

WR

Timing
and

control

Port A
register

Port B
register

Control
register

Status
register

To I/O device

Status

Control

I/O data

I/O data

Figure 11-2 Example of I/O interface unit.

Chapter11.qxd 2/2/2007 6:40 PM Page 392

EON
PreMedia

CONFIRMING PGS

select and the two register select inputs. A circuit must be provided externally
(usually, a decoder) to detect the address assigned to the interface registers.
This circuit enables the chip select (CS) input when the interface is selected by
the address bus. The two register select inputs RS1 and RS0 are usually con-
nected to the two least significant lines of the address bus. These two inputs
select one of the four registers in the interface as specified in the table accom-
panying the diagram. The content of the selected register is transfer into the
CPU via the data bus when the I/O read signal is enabled. The CPU transfers
binary information into the selected register via the data bus when the I/O
write input is enabled.

11-3 Asynchronous Data Transfer
The internal operations in a digital system are synchronized by means of clock
pulses supplied by a common pulse generator. Clock pulses are applied to all
registers within a unit and all data transfers among internal registers occur simul-
taneously during the occurrence of a clock pulse. Two units, such as a CPU and
an I/O interface, are designed independently of each other. If the registers in the
interface share a common clock with the CPU registers, the transfer between the
two units is said to be synchronous. In most cases, the internal timing in each
unit is independent from the other in that each uses its own private clock for
internal registers. In that case, the two units are said to be asynchronous to each
other. This approach is widely used in most computer systems.

Asynchronous data transfer between two independent units requires
that control signals be transmitted between the communicating units to indi-
cate the time at which data is being transmitted. One way of achieving this
is by means of a strobe pulse supplied by one of the units to indicate to the
other unit when the transfer has to occur. Another method commonly used
is to accompany each data item being transferred with a control signal that
indicates the presence of data in the bus. The unit receiving the data item
responds with another control signal to acknowledge receipt of the data.
This type of agreement between two independent units is referred to as
handshaking.

The strobe pulse method and the handshaking method of asynchronous
data transfer are not restricted to I/O transfers. In fact, they are used extensively
on numerous occasions requiring the transfer of data between two independent
units. In the general case we consider the transmitting unit as the source and the
receiving unit as the destination. For example, the CPU is the source unit dur-
ing an output or a write transfer and it is the destination unit during an input or
a read transfer. It is customary to specify the asynchronous transfer between two
independent units by means of a timing diagram that shows the timing rela-
tionship that must exist between the control signals and the data in the buses.
The sequence of control during an asynchronous transfer depends on whether
the transfer is initiated by the source or by the destination unit.

SECTION 11-3 Asynchronous Data Transfer 393

strobe

handshaking

timing diagram

Chapter11.qxd 2/2/2007 6:40 PM Page 393

EON
PreMedia

CONFIRMING PGS

Strobe Control
The strobe control method of asynchronous data transfer employs a single
control line to time each transfer. The strobe may be activated by either the
source or the destination unit. Figure 11-3(a) shows a source-initiated transfer.
The data bus carries the binary information rom source unit to the destination
unit. Typically, the bus has multiple lines to transfer an entire byte or word.
The strobe is a single line that informs the destination unit when a valid data
word is available in the bus.

As shown in the timing diagram of Fig. 11-3(b), the source unit first
places the data on the data bus. After a brief delay to ensure that the data set-
tle to a steady value, the source activates the strobe pulse. The information on
the data bus and the strobe signal remain in the active state for a sufficient time
period to allow the destination unit to receive the data. Often, the destination
unit uses the falling edge of the strobe pulse to transfer the contents of the data
bus into one of its internal registers. The source removes the data from the bus
a brief period after it disables its strobe pulse. Actually, the source does not
have to change the information in the data bus. The fact that the strobe signal
is disabled indicates that the data bus does not contain valid data. New valid
data will be available only after the strobe is enabled again.

Figure 11-4 shows a data transfer initiated by the destination unit. In this
case the destination unit activates the strobe pulse, informing the source to
provide the data. The source unit responds by placing the requested binary
information on the data bus. The data must be valid and remain in the bus
long enough for the destination unit to accept it. The falling edge of the strobe
pulse can be used again to trigger a destination register. The destination unit
then disables the strobe. The source removes the data from the bus after a pre-
determined time interval.

394 CHAPTER ELEVEN Input–Output Organization

(b) Timing diagram

Source
unit

Destination
unit

Valid data

(a) Block diagram

Data bus

Strobe

Data

Strobe

Figure 11-3 Source-initiated strobe for data transfer.

Chapter11.qxd 2/2/2007 6:40 PM Page 394

EON
PreMedia

CONFIRMING PGS

In many computers the strobe pulse is actually controlled by the clock
pulses in the CPU. The CPU is always in control of the buses and informs the
external units how to transfer data. For example, the strobe of Fig. 11-3 could
be a memory-write control signal from the CPU to a memory unit. The source,
being the CPU, places a word on the data bus and informs the memory unit,
which is the destination, that this is a write operation. Similarly, the strobe of
Fig. 11-4 could be a memory-read control signal from the CPU to a memory
unit. The destination, the CPU, initiates the read operation to inform the mem-
ory, which is the source, to place a selected word into the data bus.

The transfer of data between the CPU and an interface unit is similar to
the strobe transfer just described. Data transfer between an interface and an
I/O device is commonly controlled by a set of handshaking lines.

Handshaking
The disadvantage of the strobe method is that the source unit that initiates the
transfer has no way of knowing whether the destination unit has actually
received the data item that was placed in the bus. Similarly, a destination unit
that initiates the transfer has no way of knowing whether the source unit has
actually placed the data on the bus. The handshake method solves this prob-
lem by introducing a second control signal that provides a reply to the unit
that initiates the transfer. The basic principle of the two-wire handshaking
method of data transfer is as follows. One control line is in the same direction
as the data flow in the bus from the source to the destination. It is used by
the source unit to inform the destination unit whether there are valid data
in the bus. The other control line is in the other direction from the destination
to the source. It is used by the destination unit to inform the source whether it
can accept data. The sequence of control during the transfer depends on the
unit that initiates the transfer.

SECTION 11-3 Asynchronous Data Transfer 395

(b) Timing diagram

Source
unit

Destination
unit

Valid data

(a) Block diagram

Data bus

Strobe

Data

Strobe

Figure 11-4 Destination-initiated strobe for data transfer.

two-wire control

Chapter11.qxd 2/2/2007 6:40 PM Page 395

EON
PreMedia

CONFIRMING PGS

Figure 11-5 shows the data transfer procedure when initiated by the
source. The two handshaking lines are data valid, which is generated by the
source unit, and data accepted, generated by the destination unit. The timing
diagram shows the exchange of signals between the two units. The sequence
of events listed in part (c) shows the four possible states that the system can be
at any given time. The source unit initiates the transfer by placing the data on
the bus and enabling its data valid signal. The data accepted signal is activated
by the destination unit after it accepts the data from the bus. The source unit
then disables its data valid signal, which invalidates the data on the bus. The
destination unit then disables its data accepted signal and the system goes into

396 CHAPTER ELEVEN Input–Output Organization

Data bus

Source
unit

Data valid

Data accepted

(a) Block diagram

(b) Timing diagram

(c) Sequence of events

Source unit Destination unit

Place data on bus.
Enable data valid.

Disable data valid.
Invalidate data on bus. Disable data accepted.

Ready to accept data
(initial state.)

Accept data from bus.
Enable data accepted.

Valid dataData bus

Data valid

Data accepted

Destination
unit

Figure 11-5 Source-initiated transfer using handshaking.

Chapter11.qxd 2/2/2007 6:40 PM Page 396

EON
PreMedia

CONFIRMING PGS

its initial state. The source does not send the next data item until after the
destination unit shows its readiness to accept new data by disabling its data
accepted signal. This scheme allows arbitrary delays from one state to the next
and permits each unit to respond at its own data transfer rate. The rate of
transfer is determined by the slowest unit.

The destination-initiated transfer using handshaking lines is shown in
Fig. 11-6. Note that the name of the signal generated by the destination unit
has been changed to ready for data to reflect its new meaning. The source unit

SECTION 11-3 Asynchronous Data Transfer 397

Source
unit

Destination
unit

Data bus

Data valid

Ready for data

Ready for data

Data valid

Data bus

Source unit Destination unit

(a) Block diagram

(b) Timing diagram

(c) Sequence of events

Valid data

Place data on bus.
Enable data valid.

Accept data from bus.
Disable ready for data.

Ready to accept data.
Enable ready for data.

Disable data valid.
Invalidate data on bus

(initial state.)

Figure 11-6 Destination-initiated transfer using handshaking.

Chapter11.qxd 2/2/2007 6:40 PM Page 397

EON
PreMedia

CONFIRMING PGS

in this case does not place data on the bus until after it receives the ready for
data signal from the destination unit. From there on, the handshaking procedure
follows the same pattern as in the source-initiated case. Note that the sequence
of events in both cases would be identical if we consider the ready for data
signal as the complement of data accepted. In fact, the only difference between
the source-initiated and the destination-initiated transfer is in their choice of
initial state.

The handshaking scheme provides a high degree of flexibility and relia-
bility because the successful completion of a data transfer relies on active par-
ticipation by both units. If one unit is faulty, the data transfer will not be
completed. Such an error can be detected by means of a timeout mechanism,
which produces an alarm if the data transfer is not completed within a prede-
termined time. The timeout is implemented by means of an internal clock that
starts counting time when the unit enables one of its handshaking control sig-
nals. If the return handshake signal does not respond within a given time
period, the unit assumes that an error has occurred. The timeout signal can be
used to interrupt the processor and hence execute a service routine that takes
appropriate error recovery action.

Asynchronous Serial Transfer
The transfer of data between two units may be done in parallel or serial. In par-
allel data transmission, each bit of the message has its own path and the total
message is transmitted at the same time. This means that an n-bit message must
be transmitted through n separate conductor paths. In serial data transmission,
each bit in the message is sent in sequence one at a time. This method requires
the use of one pair of conductors or one conductor and.a common ground.
Parallel transmission is faster but requires many wires. It is used for short dis-
tances and where speed is important. Serial transmission is slower but is less
expensive since it requires only one pair of conductors.

Serial transmission can be synchronous or asynchronous. In synchro-
nous transmission, the two units share a common clock frequency and bits are
transmitted continuously at the rate dictated by the clock pulses. In long-
distant serial transmission, each unit is driven by a separate clock of the same
frequency. Synchronization signals are transmitted periodically between the
two units to keep their clocks in step with each other. In asynchronous trans-
mission, binary information is sent only when it is available and the line
remains idle when there is no information to be transmitted. This is in contrast
to synchronous transmission, where bits must be transmitted continuously to
keep the clock frequency in both units synchronized with each other.
Synchronous serial transmission is discussed further in Sec. 11-8.

A serial asynchronous data transmission technique used in many inter-
active terminals employs special bits that are inserted at both ends of the char-
acter code. With this technique, each character consists of three parts: a start
bit, the character bits, and stop bits. The convention is that the transmitter

398 CHAPTER ELEVEN Input–Output Organization

timeout

synchronous

asynchronous

Chapter11.qxd 2/2/2007 6:40 PM Page 398

EON
PreMedia

CONFIRMING PGS

rests at the 1-state when no characters are transmitted. The first bit, called the
start bit, is always a 0 and is used to indicate the beginning of a character. The
last bit called the stop bit is always a 1. An example of this format is shown in
Fig. 11-7.

A transmitted character can be detected by the receiver from knowledge
of the transmission rules:

1. When a character is not being sent, the line is kept in the 1-state.
2. The initiation of a character transmission is detected from the start bit,

which is always 0.
3. The character bits always follow the start bit.
4. After the last bit of the character is transmitted, a stop bit is detected

when the line returns to the 1-state for at least one bit time.

Using these rules, the receiver can detect the start bit when the line goes from
1 to 0. A clock in the receiver examines the line at proper bit times. The
receiver knows the transfer rate of the bits and the number of character bits to
accept. After the character bits are transmitted, one or two stop bits are sent.
The stop bits are always in the 1-state and frame the end of the character to
signify the idle or wait state.

At the end of the character the line is held at the 1-state for a period of
at least one or two bit times so that both the transmitter and receiver can
resynchronize. The length of time that the line stays in this state depends on
the amount of time required for the equipment to resynchronize. Some older
electromechanical terminals use two stop bits, but newer terminals use one
stop bit. The line remains in the 1-state until another character is transmitted.
The stop time ensures that a new character will not follow for one or two bit
times.

As an illustration, consider the serial transmission of a terminal whose
transfer rate is 10 characters per second. Each transmitted character consists of

SECTION 11-3 Asynchronous Data Transfer 399

1 1 0 0 0 1 0 1

Start
bit

Character bit Stop
bits

Figure 11-7 Asynchronous serial transmission.

start bit

stop bit

Chapter11.qxd 2/2/2007 6:40 PM Page 399

EON
PreMedia

CONFIRMING PGS

a start bit, eight information bits, and two stop bits, for a total of 11 bits. Ten
characters per second means that each character takes 0.1 s for transfer. Since
there are 11 bits to be transmitted, it follows that the bit time is 9.09 ms. The
baud rate is defined as the rate at which serial information is transmitted and is
equivalent to the data transfer in bits per second. Ten characters per second
with an 11-bit format has a transfer rate of 110 baud.

The terminal has a keyboard and a printer. Every time a key is
depressed, the terminal sends 11 bits serially along a wire. To print a charac-
ter in the printer, an 11-bit message must be received along another wire. The
terminal interface consists of a transmitter and a receiver. The transmitter
accepts an 8-bit character from the computer and proceeds to send a serial 11-bit
message into the printer line. The receiver accepts a serial 11-bit message from
the keyboard line and forwards the 8-bit character code into the computer.
Integrated circuits are available which are specifically designed to provide the
interface between computer and similar interactive terminals. Such a circuit is
called an asynchronous communication interface or a universal asynchronous receiver-
transmitter (UART).

Asynchronous Communication Interface
The block diagram of an asynchronous communication interface is shown in
Fig. 11-8. It functions as both a transmitter and a receiver. The interface is ini-
tialized for a particular mode of transfer by means of a control byte that is
loaded into its control register. The transmitter register accepts a data byte
from the CPU through the data bus. This byte is transferred to a shift register
for serial transmission. The receiver portion receives serial information into
another shift register, and when a complete data byte is accumulated, it is
transferred to the receiver register. The CPU can select the receiver register to
read the byte through the data bus. The bits in the status register are used for
input and output flags and for recording certain errors that may occur during
the transmission. The CPU can read the status register to check the status
of the flag bits and to determine if any errors have occurred. The chip select
and the read and write control lines communicate with the CPU. The chip
select (CS) input is used to select the interface through the address bus. The
register select (RS) is associated with the read (RD) and write (WR) controls.
Two registers are write-only and two are read-only. The register selected is a
function of the RS value and the RD and WR status, as listed in the table
accompanying the diagram.

The operation of the asynchronous communication interface is initial-
ized by the CPU by sending a byte to the control register. The initialization
procedure places the interface in a specific mode of operation as it defines
certain parameters such as the baud rate to use, how many bits are in each
character, whether to generate and check parity, and how many stop bits are
appended to each character. Two bits in the status register are used as flags.

400 CHAPTER ELEVEN Input–Output Organization

baud rate

Chapter11.qxd 2/2/2007 6:40 PM Page 400

EON
PreMedia

CONFIRMING PGS

One bit is used to indicate whether the transmitter register is empty and
another bit is used to indicate whether the receiver register is full.

The operation of the transmitter portion of the interface is as follows.
The CPU reads the status register and checks the flag to see if the transmitter
register is empty. If it is empty, the CPU transfers a character to the transmit-
ter register and the interface clears the flag to mark the register full. The first
bit in the transmitter shift register is set to 0 to generate a start bit. The char-
acter is transferred in parallel from the transmitter register to the shift register
and the appropriate number of stop bits are appended into the shift register.
The transmitter register is then marked empty. The character can now be
transmitted one bit at a time by shifting the data in the shift register at the

SECTION 11-3 Asynchronous Data Transfer 401

CS

Bidirectional

data bus

Bus
buffers Transmitter

register

Transmit
data

Transmitter
clock

Receiver
clock

Receive
data

Control
register

Status
register

Receiver
register

Shift
register

Transmitter
control

and clock

Receiver
control

and clock

Shift
register

Register select

Chip select

In
te

rn
al

 b
us

I/O read

I/O write

RS

RD

WR

Timing
and

control

CS RS Operation Register selected

0 � � None: data bus in high-impedance

0 0 WR Transmitter register

1 1 WR Control register

1 0 RD Receiver register

1 1 RD Status register

Figure 11-8 Block diagram of a typical asynchronous communication interface.

transmitter

Chapter11.qxd 2/2/2007 6:40 PM Page 401

EON
PreMedia

CONFIRMING PGS

specified baud rate. The CPU can transfer another character to the transmit-
ter register after checking the flag in the status register. The interface is said to
be double buffered because a new character can be loaded as soon as the previ-
ous one starts transmission.

The operation of the receiver portion of the interface is similar. The
receive data input is in the 1-state when the line is idle. The receiver control
monitors the receive-data line for a 0 signal to detect the occurrence of a start
bit. Once a start bit has been detected, the incoming bits of the character are
shifted into the shift register at the prescribed baud rate. After receiving the
data bits, the interface checks for the parity and stop bits. The character with-
out the start and stop bits is then transferred in parallel from the shift register
to the receiver register. The flag in the status register is set to indicate that the
receiver register is full. The CPU reads the status register and checks the flag,
and if set, it reads the data from the receiver register.

The interface checks for any possible errors during transmission and sets
appropriate bits in the status register. The CPU can read the status register at
any time to check if any errors have occurred. Three possible errors that the
interface checks during transmission are parity error, framing error, and over-
run error. Parity error occurs if the number of 1’s in the received data is not
the correct parity. A framing error occurs if the right number of stop bits is not
detected at the end of the received character. An overrun error occurs if the
CPU does not read the character from the receiver register before the next
one becomes available in the shift register. Overrun error results in a loss of
characters in the received data stream.

First-In, First-Out Buffer
A first-in, first-out (FIFO) buffer is a memory unit that stores information
in such a manner that the item first in is the item first out. A FIFO buffer
comes with separate input and output terminals. The important feature of
this buffer is that it can input data and output data at two different rates and
the output data are always in the same order in which the data entered the
buffer. When placed between two units, the FIFO can accept data from
the source unit at one rate of transfer and deliver the data to the destination
unit at another rate. If the source unit is slower than the destination unit, the
buffer can be filled with data at a slow rate and later emptied at the higher
rate. If the source is faster than the destination, the FIFO is useful for those
cases where the source data arrive in bursts that fill out the buffer but the
time between bursts is long enough for the destination unit to empty some
or all the information from the buffer. Thus a FIFO buffer can be useful
in some applications when data are transferred asynchronously. It piles up
data as they come in and gives them away in the same order when the data
are needed.

The logic diagram of a typical 4 � 4 FIFO buffer is shown in Fig. 11-9.
It consists of four 4-bit registers RI, I � 1, 2, 3, 4, and a control register with

402 CHAPTER ELEVEN Input–Output Organization

receiver

FIFO

Chapter11.qxd 2/2/2007 6:40 PM Page 402

EON
PreMedia

CONFIRMING PGS

flip-flops Fi ,i � 1, 2, 3, 4, one for each register. The FIFO can store four words
of four bits each. The number of bits per word can be increased by increasing
the number of bits in each register and the number of words can be increased
by increasing the number of registers.

A flip-flop Fi in the control register that is set to 1 indicates that a 4-bit
data word is stored in the corresponding register RI. A 0 in Fi indicates that
the corresponding register does not contain valid data. The control register

SECTION 11-3 Asynchronous Data Transfer 403

4-bit
register

R1

S F 1

R F �1

4-bit
register

R2

4-bit
register

Data
output

ClockClockClockClock

Data
input

Insert

Input ready

Master clear

Output
ready

Delete

R3

4-bit
register

R4

S F 2

R F �2

S F 3

R F �3

S F 4

R F �4

Figure 11-9 Circuit diagram of 4 � 4 FIFO buffer.

Chapter11.qxd 2/2/2007 6:40 PM Page 403

EON
PreMedia

CONFIRMING PGS

directs the movement of data through the registers. Whenever the Fi bit of the
control register is set (Fi � 1) and the Fi � 1 bit is reset (F�i � 1 � 1), a clock is gen-
erated causing register R(I � 1) to accept the data from register RI. The same
clock transition sets Fi � 1 to 1 and resets Fi to 0. This causes the control flag to
move one position to the right together with the data. Data in the registers
move down the FIFO toward the output as long as there are empty locations
ahead of it. This ripple-through operation stops when the data reach a register
RI with the next flip-flop Fi � 1 being set to 1, or at the last register R4. An over-
all master clear is used to initialize all control register flip-flops to 0.

Data are inserted into the buffer provided that the input ready signal is
enabled. This occurs when the first control flip-flop F1 is reset, indicating that
register R1 is empty. Data are loaded from the input lines by enabling the
clock in R1 through the insert control line. The same clock sets F1, which dis-
ables the input ready control, indicating that the FIFO is now busy and unable
to accept more data. The ripple-through process begins provided that R 2 is
empty. The data in R1 are transferred into R2 and F1 is cleared. This enables
the input ready line, indicating that the inputs are now available for another
data word. If the FIFO is full, F1 remains set and the input ready line stays in
the 0 state. Note that the two control lines input ready and insert constitute a
destination-initiated pair of handshake lines.

The data falling through the registers stack up at the output end. The out-
put ready control line is enabled when the last control flip-flop F4 is set, indi-
cating that there are valid data in the output register R4. The output data from
R4 are accepted by a destination unit, which then enables the delete control sig-
nal. This resets F4, causing output ready to disable, indicating that the data on
the output are no longer valid. Only after the delete signal goes back to 0 can
the data from R3 move into R4. If the FIFO is empty, there will be no data in
R3 and F4 will remain in the reset state. Note that the two control lines output
ready and delete constitute a source-initiated pair of handshake lines.

11-4 Modes of Transfer
Binary information received from an external device is usually stored in mem-
ory for later processing. Information transferred from the central computer
into an external device originates in the memory unit. The CPU merely exe-
cutes the I/O instructions and may accept the data temporarily, but the ulti-
mate source or destination is the memory unit. Data transfer between the
central computer and I/O devices may be handled in a variety of modes.
Some modes use the CPU as an intermediate path; others transfer the data
directly to and from the memory unit. Data transfer to and from peripherals
may be handled in one of three possible modes:

1. Programmed I/O
2. Interrupt-initiated I/O
3. Direct memory access (DMA)

404 CHAPTER ELEVEN Input–Output Organization

Chapter11.qxd 2/2/2007 6:40 PM Page 404

EON
PreMedia

CONFIRMING PGS

Programmed I/O operations are the result of I/O instructions written in
the computer program. Each data item transfer is initiated by an instruction in
the program. Usually, the transfer is to and from a CPU register and periph-
eral. Other instructions are needed to transfer the data to and from CPU and
memory. Transferring data under program control requires constant monitor-
ing of the peripheral by the CPU. Once a data transfer is initiated, the CPU is
required to monitor the interface to see when a transfer can again be made. It
is up to the programmed instructions executed in the CPU to keep close tabs
on everything that is taking place in the interface unit and the I/O device.

In the programmed I/O method, the CPU stays in a program loop until
the I/O unit indicates that it is ready for data transfer. This is a time-consum-
ing process since it keeps the processor busy needlessly. It can be avoided by
using an interrupt facility and special commands to inform the interface to issue
an interrupt request signal when the data are available from the device. In
the meantime the CPU can proceed to execute another program. The interface
meanwhile keeps monitoring the device. When the interface determines that
the device is ready for data transfer, it generates an interrupt request to the
computer. Upon detecting the external interrupt signal, the CPU momentarily
stops the task it is processing, branches to a service program to process the I/O
transfer, and then returns to the task it was originally performing.

Transfer of data under programmed I/O is between CPU and periph-
eral. In direct memory access (DMA), the interface transfers data into and out
of the memory unit through the memory bus. The CPU initiates the transfer
by supplying the interface with the starting address and the number of words
needed to be transferred and then proceeds to execute other tasks. When the
transfer is made, the DMA requests memory cycles through the memory bus.
When the request is granted by the memory controller, the DMA transfers the
data directly into memory. The CPU merely delays its memory access opera-
tion to allow the direct memory I/O transfer. Since peripheral speed is usually
slower than processor speed, I/O-memory transfers are infrequent compared
to processor access to memory. DMA transfer is discussed in more detail in
Sec. 11-6.

Many computers combine the interface logic with the requirements for
direct memory access into one unit and call it an I/O processor (IOP). The
IOP can handle many peripherals through a DMA and interrupt facility. In
such a system, the computer is divided into three separate modules: the mem-
ory unit, the CPU, and the IOP. I/O processors are presented in Sec. 11-7.

Example of Programmed I/O
In the programmed I/O method, the I/O device does not have direct access to
memory. A transfer from an I/O device to memory requires the execution of
several instructions by the CPU, including an input instruction to transfer the
data from the device to the CPU and a store instruction to transfer the data from
the CPU to memory. Other instructions may be needed to verify that the data
are available from the device and to count the numbers of words transferred.

SECTION 11-4 Modes of Transfer 405

programmed I /O

interrupt

DMA

IOP

Chapter11.qxd 2/2/2007 6:40 PM Page 405

EON
PreMedia

CONFIRMING PGS

An example of data transfer from an I/O device through an interface
into the CPU is shown in Fig. 11-10. The device transfers bytes of data one at
a time as they are available. When a byte of data is available, the device places
it in the I/O bus and enables its data valid line. The interface accepts the byte
into its data register and enables the data accepted line. The interface sets a bit
in the status register that we will refer to as an F or “flag” bit. The device can
now disable the data valid line, but it will not transfer another byte until the
data accepted line is disabled by the interface. This is according to the hand-
shaking procedure established in Fig. 11-5.

A program is written for the computer to check the flag in the status reg-
ister to determine if a byte has been placed in the data register by the I/O
device. This is done by reading the status register into a CPU register and
checking the value of the flag bit. If the flag is equal to 1, the CPU reads the
data from the data register. The flag bit is then cleared to 0 by either the CPU
or the interface, depending on how the interface circuits are designed. Once
the flag is cleared, the interface disables the data accepted line and the device
can then transfer the next data byte.

A flowchart of the program that must be written for the CPU is shown in
Fig. 11-11. It is assumed that the device is sending a sequence of bytes that must
be stored in memory. The transfer of each byte requires three instructions:

1. Read the status register.
2. Check the status of the flag bit and branch to step 1 if not set or to step 3

if set.
3. Read the data register.

Each byte is read into a CPU register and then transferred to memory with a
store instruction. A common I/O programming task is to transfer a block of
words from an I/O device and store them in a memory buffer. A program that

406 CHAPTER ELEVEN Input–Output Organization

Data bus I/O bus

I/O
device

Data valid

Data accepted

Interface

Data register

Status
register

Address bus

I/O readCPU

I/O write F

F � Flag bit

Figure 11-10 Data transfer from I/O device to CPU.

Chapter11.qxd 2/2/2007 6:40 PM Page 406

EON
PreMedia

CONFIRMING PGS

stores input characters in a memory buffer using the instructions defined in
Chap. 6 is listed in Table 6-21.

The programmed I/O method is particularly useful in small low-speed
computers or in systems that are dedicated to monitor a device continuously.
The difference in information transfer rate between the CPU and the I/O
device makes this type of transfer inefficient. To see why this is inefficient, con-
sider a typical computer that can execute the two instructions that read the sta-
tus register and check the flag in 1 �s. Assume that the input device transfers

SECTION 11-4 Modes of Transfer 407

Read data register

Check flag bit

Read status register

Flag
� 0

� 1

no

yes

Transfer data to memory

Operation
complete?

Continue
with

program

Figure 11-11 Flowchart for CPU program to input data.

Chapter11.qxd 2/2/2007 6:40 PM Page 407

EON
PreMedia

CONFIRMING PGS

its data at an average rate of 100 bytes per second. This is equivalent to one
byte every 10,000 �s. This means that the CPU will check the flag 10,000
times between each transfer. The CPU is wasting time while checking the flag
instead of doing some other useful processing task.

Interrupt-Initiated I/O
An alternative to the CPU constantly monitoring the flag is to let the interface
inform the computer when it is ready to transfer data. This mode of transfer
uses the interrupt facility. While the CPU is running a program, it does not
check the flag. However, when the flag is set, the computer is momentarily
interrupted from proceeding with the current program and is informed of the
fact that the flag has been set. The CPU deviates from what it is doing to take
care of the input or output transfer. After the transfer is completed, the com-
puter returns to the previous program to continue what it was doing before the
interrupt.

The CPU responds to the interrupt signal by storing the return address
from the program counter into a memory stack and then control branches to
a service routine that processes the required I/O transfer. The way that the
processor chooses the branch address of the service routine varies from one
unit to another. In principle, there are two methods for accomplishing this.
One is called vectored interrupt and the other, nonvectored interrupt. In a nonvec-
tored interrupt, the branch address is assigned to a fixed location in memory.
In a vectored interrupt, the source that interrupts supplies the branch infor-
mation to the computer. This information is called the interrupt vector. In some
computers the interrupt vector is the first address of the I/O service routine.
In other computers the interrupt vector is an address that points to a location
in memory where the beginning address of the I/O service routine is stored.
A system with vectored interrupt is demonstrated in Sec. 11-5.

Software Considerations
The previous discussion was concerned with the basic hardware needed to
interface I/O devices to a computer system. A computer must also have soft-
ware routines for controlling peripherals and for transfer of data between the
processor and peripherals. I/O routines must issue control commands to acti-
vate the peripheral and to check the device status to determine when it is
ready for data transfer. Once ready, information is transferred item by item
until all the data are transferred. In some cases, a control command is then
given to execute a device function such as stop tape or print characters. Error
checking and other useful steps often accompany the transfers. In interrupt-
controlled transfers, the I/O software must issue commands to the peripheral
to interrupt when ready and to service the interrupt when it occurs. In DMA
transfer, the I/O software must initiate the DMA channel to start its operation.

408 CHAPTER ELEVEN Input–Output Organization

vectored interrupt

I/O routines

Chapter11.qxd 2/2/2007 6:40 PM Page 408

EON
PreMedia

CONFIRMING PGS

Software control of input–output equipment is a complex undertaking.
For this reason I/O routines for standard peripherals are provided by the man-
ufacturer as part of the computer system. They are usually included within the
operating system. Most operating systems are supplied with a variety of I/O
programs to support the particular line of peripherals offered for the com-
puter. I/O routines are usually available as operating system procedures and
the user refers to the established routines to specify the type of transfer
required without going into detailed machine language programs.

11-5 Priority Interrupt
Data transfer between the CPU and an I/O device is initiated by the CPU.
However, the CPU cannot start the transfer unless the device is ready to com-
municate with the CPU. The readiness of the device can be determined from
an interrupt signal. The CPU responds to the interrupt request by storing the
return address from PC into a memory stack and then the program branches
to a service routine that processes the required transfer. As discussed in Sec. 8-7,
some processors also push the current PSW (program status word) onto the
stack and load a new PSW for the service routine. We neglect the PSW here
in order not to complicate the discussion of I/O interrupts.

In a typical application a number of I/O devices are attached to the com-
puter, with each device being able to originate an interrupt request. The first
task of the interrupt system is to identify the source of the interrupt. There is
also the possibility that several sources will request service simultaneously. In
this case the system must also decide which device to service first.

A priority interrupt is a system that establishes a priority over the vari-
ous sources to determine which condition is to be serviced first when two or
more requests arrive simultaneously. The system may also determine which
conditions are permitted to interrupt the computer while another interrupt is
being serviced. Higher-priority interrupt levels are assigned to requests which,
if delayed or interrupted, could have serious consequences. Devices with high-
speed transfers such as magnetic disks are given high priority, and slow
devices such as keyboards receive low priority. When two devices interrupt
the computer at the same time, the computer services the device, with the
higher priority first.

Establishing the priority of simultaneous interrupts can be done by soft-
ware or hardware. A polling procedure is used to identify the highest-priority
source by software means. In this method there is one common branch
address for all interrupts. The program that takes care of interrupts begins at
the branch address and polls the interrupt sources in sequence. The order in
which they are tested determines the priority of each interrupt. The highest-
priority source is tested first, and if its interrupt signal is on, control branches
to a service routine for this source. Otherwise, the next-lower-priority source
is tested, and so on. Thus the initial service routine for all interrupts consists

SECTION 11-5 Priority Interrupt 409

priority interrupt

polling

Chapter11.qxd 2/2/2007 6:40 PM Page 409

EON
PreMedia

CONFIRMING PGS

of a program that tests the interrupt sources in sequence and branches to one
of many possible service routines. The particular service routine reached
belongs to the highest-priority device among all devices that interrupted the
computer. The disadvantage of the software method is that if there are many
interrupts, the time required to poll them can exceed the time available to
service the I/O device. In this situation a hardware priority-interrupt unit can
be used to speed up the operation.

A hardware priority-interrupt unit functions as an overall manager in an
interrupt system environment. It accepts interrupt requests from many
sources, determines which of the incoming requests has the highest priority,
and issues an interrupt request to the computer based on this determination.
To speed up the operation, each interrupt source has its own interrupt vector
to access its own service routine directly. Thus no polling is required because
all the decisions are established by the hardware priority-interrupt unit. The
hardware priority function can be established by either a serial or a parallel
connection of interrupt lines. The serial connection is also known as the daisy-
chaining method.

Daisy-Chaining Priority
The daisy-chaining method of establishing priority consists of a serial connec-
tion of all devices that request an interrupt. The device with the highest prior-
ity is placed in the first position, followed by lower-priority devices up to the
device with the lowest priority, which is placed last in the chain. This method
of connection between three devices and the CPU is shown in Fig. 11-12. The
interrupt request line is common to all devices and forms a wired logic con-
nection. If any device has its interrupt signal in the low-level state, the inter-
rupt line goes to the low-level state and enables the interrupt input in the CPU.
When no interrupts arc pending, the interrupt line stays in the high-level state
and no interrupts are recognized by the CPU. This is equivalent to a negative-
logic OR operation. The CPU responds to an interrupt request by enabling
the interrupt acknowledge line. This signal is received by device 1 at its PI (pri-
ority in) input. The acknowledge signal passes on to the next device through
the PO (priority out) output only if device 1 is not requesting an interrupt. If
device 1 has a pending interrupt, it blocks the acknowledge signal from the
next device by placing a 0 in the PO output. It then proceeds to insert its own
interrupt vector address (VAD) into the data bus for the CPU to use during
the interrupt cycle.

A device with a 0 in its PI input generates a 0 in its PO output to inform
the next-lower-priority device that the acknowledge signal has been blocked.
A device that is requesting an interrupt and has a 1 in its PI input will inter-
cept the acknowledge signal by placing a 0 in its PO output. If the device does
not have pending interrupts, it transmits the acknowledge signal to the next
device by placing a 1 in its PO output. Thus the device with PI � 1 and PO � 0

410 CHAPTER ELEVEN Input–Output Organization

vector address (VAD)

Chapter11.qxd 2/2/2007 6:40 PM Page 410

EON
PreMedia

CONFIRMING PGS

is the one with the highest priority that is requesting an interrupt, and this
device places its VAD on the data bus. The daisy chain arrangement gives the
highest priority to the device that receives the interrupt acknowledge signal
from the CPU. The farther the device is from the first position, the lower is its
priority.

Figure 11-13 shows the internal logic that must be included within each
device when connected in the daisy-chaining scheme. The device sets its RF
flip-flop when it wants to interrupt the CPU. The output of the RF flip-flop
goes through an open-collector inverter, a circuit that provides the wired logic
for the common interrupt line. If PI � 0, both PO and the enable line to VAD
are equal to 0, irrespective of the value of RF. If PI � 1 and RF � 0, then
PO � 1 and the vector address is disabled. This condition passes the acknowl-
edge signal to the next device through PO. The device is active when PI � 1
and RF � 1. This condition places a 0 in PO and enables the vector address
for the data bus. It is assumed that each device has its own distinct vector
address. The RF flip-flop is reset after a sufficient delay to ensure that the CPU
has received the vector address.

Parallel Priority Interrupt
The parallel priority interrupt method uses a register whose bits are set sepa-
rately by the interrupt signal from each device. Priority is established accord-
ing to the position of the bits in the register. In addition to the interrupt
register, the circuit may include a mask register whose purpose is to control
the status of each interrupt request. The mask register can be programmed to

SECTION 11-5 Priority Interrupt 411

Device 1

PI PO

Device 2

VAD 1 VAD 2 VAD 3

PO

Device 3
To next
device

Interrupt request

Processor data bus

Interrupt acknowledge

PIPI PO

INT

INTACK

CPU

Figure 11-12 Daisy-chain priority interrupt.

Chapter11.qxd 2/2/2007 6:40 PM Page 411

EON
PreMedia

CONFIRMING PGS

disable lower-priority interrupts while a higher-priority device is being serv-
iced. It can also provide a facility that allows a high-priority device to inter-
rupt the CPU while a lower-priority device is being serviced.

The priority logic for a system of four interrupt sources is shown in
Fig. 11-14. It consists of an interrupt register whose individual bits are set by
external conditions and cleared by program instructions. The magnetic disk,
being a high-speed device, is given the highest priority. The printer has the next
priority, followed by a character reader and a keyboard. The mask register has
the same number of bits as the interrupt register. By means of program instruc-
tions, it is possible to set or reset any bit in the mask register. Each interrupt bit
and its corresponding mask bit are applied to an AND gate to produce the four
inputs to a priority encoder. In this way an interrupt is recognized only if its
corresponding mask bit is set to 1 by the program. The priority encoder gen-
erates two bits of the vector address, which is transferred to the CPU.

Another output from the encoder sets an interrupt status flip-flop IST
when an interrupt that is not masked occurs. The interrupt enable flip-flop
IEN can be set or cleared by the program to provide an overall control over
the interrupt system. The outputs of IST ANDed with IEN provide a common
interrupt signal for the CPU. The interrupt acknowledge INTACK signal from
the CPU enables the bus buffers in the output register and a vector address
VAD is placed into the data bus. We will now explain the priority encoder cir-
cuit and then discuss the interaction between the priority interrupt controller
and the CPU.

412 CHAPTER ELEVEN Input–Output Organization

VAD

Enable

Delay
Open-collector

inverter

Priority in

Interrupt
request

from device

Interrupt request to CPU

PI

Priority out

Vector address

PO

PI RF PO Enable
0 0 0 0
0 1 0 0
1 0 1 0
1 1 0 1

S Q
RF

R

Figure 11-13 One stage of the daisy-chain priority arrangement.

priority logic

Chapter11.qxd 2/2/2007 6:40 PM Page 412

EON
PreMedia

CONFIRMING PGS

Priority Encoder
The priority encoder is a circuit that implements the priority function. The
logic of the priority encoder is such that if two or more inputs arrive at the same
time, the input having the highest priority will take precedence. The truth table
of a four-input priority encoder is given in Table 11-2. The �’s in the table des-
ignate don’t-care conditions. Input I0 has the highest priority; so regardless of
the values of other inputs, when this input is 1, the output generates an output
xy � 00. I1 has the next priority level. The output is 01 if I1 � 1 provided that

SECTION 11-5 Priority Interrupt 413

IEN IST

0
I0

y

VAD
to CPU

x

0

0

0

0

0

0

Enable

Interrupt
to CPU

Mask
register

Interrupt
register

Disk

Printer

Reader

Keyboard

INTACK
from CPU

I1

I2

I3

1

2

3

0

1

2

3

Priority
encoder

Figure 11-14 Priority interrupt hardware.

Chapter11.qxd 2/2/2007 6:40 PM Page 413

EON
PreMedia

CONFIRMING PGS

I0 � 0, regardless of the values of the other two lower-priority inputs. The out-
put for I2 is generated only if higher-priority inputs are 0, and so on down the
priority level. The interrupt status IST is set only when one or more inputs are
equal to 1. If all inputs are 0, IST is cleared to 0 and the other outputs of the
encoder are not used, so they are marked with don’t-care conditions. This is
because the vector address is not transferred to the CPU when IST � 0. The
Boolean functions listed in the table specify the internal logic of the encoder.
Usually, a computer will have more than four interrupt sources. A priority
encoder with eight inputs, for example, will generate an output of three bits.

The output of the priority encoder is used to form part of the vector
address for each interrupt source. The other bits of the vector address can be
assigned any value. For example, the vector address can be formed by append-
ing six zeros to the x and y outputs of the encoder. With this choice the interrupt
vectors for the four I/O devices are assigned binary numbers 0, 1, 2, and 3.

Interrupt Cycle
The interrupt enable flip-flop IEN shown in Fig. 11-14 can be set or cleared by
program instructions. When IEN is cleared, the interrupt request coming from
IST is neglected by the CPU. The program-controlled IEN bit allows the pro-
grammer to choose whether to use the interrupt facility. If an instruction to
clear IEN has been inserted in the program, it means that the user does not
want his program to be interrupted. An instruction to set IEN indicates that
the interrupt facility will be used while the current program is running. Most
computers include internal hardware that clears IEN to 0 every time an inter-
rupt is acknowledged by the processor.

At the end of each instruction cycle the CPU checks IEN and the inter-
rupt signal from IST. If either is equal to 0, control continues with the next
instruction. If both IEN and IST are equal to 1, the CPU goes to an interrupt
cycle. During the interrupt cycle the CPU performs the following sequence of
microoperations:

SP ← SP � 1 Decrement stack pointer
M [SP] ← PC Push PC into stack

414 CHAPTER ELEVEN Input–Output Organization

TABLE 11-2 Priority Encoder Truth Table

Inputs Outputs

I0 I1 I2 I3 x y IST Boolean functions

1 � � � 0 0 1
0 1 � � 0 l 1 x � I�0I �1
0 0 1 � 1 0 1 y � I�0 I1 � I �0 I �2
0 0 0 1 1 1 1 (IST) � I0 � I1 � I2 � I3

0 0 0 0 � � 0

Chapter11.qxd 2/2/2007 6:40 PM Page 414

EON
PreMedia

CONFIRMING PGS

INTACK ← 1 Enable interrupt acknowledge
PC ← VAD Transfer vector address to PC
IEN ← 0 Disable further interrupts
Go to fetch next instruction

The CPU pushes the return address from PC into the stack. It then acknowl-
edges the interrupt by enabling the INTACK line. The priority interrupt unit
responds by placing a unique interrupt vector into the CPU data bus. The
CPU transfers the vector address into PC and clears IEN prior to going to the
next fetch phase. The instruction read from memory during the next fetch
phase will be the one located at the vector address.

Software Routines
A priority interrupt system is a combination of hardware and software tech-
niques. So far we have discussed the hardware aspects of a priority interrupt
system. The computer must also have software routines for servicing the inter-
rupt requests and for controlling the interrupt hardware registers. Figure 11-15
shows the programs that must reside in memory for handling the interrupt

SECTION 11-5 Priority Interrupt 415

Address

Memory I/O service programs

DISK Program to service
magnetic disk

Program to service
line printer

Program to service
character reader

Program to service
keyboard

0

1

2

3

JMP PTR

JMP DISK

JMP PDR

JMP KBD

Main program

Stack

256

750

750

PTR

RDR

KBD

256

Figure 11-15 Programs stored in memory for servicing interrupts.

Chapter11.qxd 2/2/2007 6:40 PM Page 415

EON
PreMedia

CONFIRMING PGS

system. Each device has its own service program that can be reached through
a jump (JMP) instruction stored at the assigned vector address. The symbolic
name of each routine represents the starting address of the service program.
The stack shown in the diagram is used for storing the return address after
each interrupt.

To ilustrate with a specific example assume that the keyboard sets its
interrupt bit while the CPU is executing the instruction in location 749 of the
main program. At the end of the instruction cycle, the computer goes to an
interrupt cycle. It stores the return address 750 in the stack and then accepts
the vector address 00000011 from the bus and transfers it to PC. The instruc-
tion in location 3 is executed next, resulting in transfer of control to the KBD
routine. Now suppose that the disk sets its interrupt bit when the CPU is exe-
cuting the instruction at address 255 in the KBD program. Address 256 is
pushed into the stack and control is transferred to the DISK service program.
The last instruction in each routine is a return from interrupt instruction.
When the disk service program is completed, the return instruction pops the
stack and places 256 into PC. This returns control to the KBD routine to con-
tinue servicing the keyboard. At the end of the KBD program, the last instruc-
tion pops the stack and returns control to the main program at address 750.
Thus, a higher-priority device can interrupt a lower-priority device. It is
assumed that the time spent in servicing the high-priority interrupt is short
compared to the transfer rate of the low-priority device so that no loss of infor-
mation takes place.

Initial and Final Operations
Each interrupt service routine must have an initial and final set of operations
for controlling the registers in the hardware interrupt system. Remember that
the interrupt enable IEN is cleared at the end of an interrupt cycle. This flip-
flop must be set again to enable higher-priority interrupt requests, but not
before lower-priority interrupts are disabled. The initial sequence of each
interrupt service routine must have instructions to control the interrupt hard-
ware in the following manner:

1. Clear lower-level mask register bits.
2. Clear interrupt status bit IST.
3. Save contents of processor registers.
4. Set interrupt enable bit IEN.
5. Proceed with service routine.

The lower-level mask register bits (including the bit of the source that
interrupted) are cleared to prevent these conditions from enabling the
interrupt. Although lower-priority interrupt sources are assigned to higher-
numbered bits in the mask register, priority can be changed if desired since

416 CHAPTER ELEVEN Input–Output Organization

service program

Chapter11.qxd 2/2/2007 6:40 PM Page 416

EON
PreMedia

CONFIRMING PGS

the programmer can use any bit configuration for the mask register. The inter-
rupt status bit must be cleared so it can be set again when a higher-priority
interrupt occurs. The contents of processor registers are saved because they
may be needed by the program that has been interrupted after control returns
to it. The interrupt enable IEN is then set to allow other (higher-priority) inter-
rupts and the computer proceeds to service the interrupt request.

The final sequence in each interrupt service routine must have instruc-
tions to control the interrupt hardware in the following manner:

1. Clear interrupt enable bit IEN.
2. Restore contents of processor registers.
3. Clear the bit in the interrupt register belonging to the source that has

been serviced.
4. Set lower-level priority bits in the mask register.
5. Restore return address into PC and set IEN.

The bit in the interrupt register belonging to the source of the interrupt
must be cleared so that it will be available again for the source to interrupt. The
lower-priority bits in the mask register (including the bit of the source being
interrupted) are set so they can enable the interrupt. The return to the inter-
rupted program is accomplished by restoring the return address to PC. Note that
the hardware must be designed so that no interrupts occur while executing steps
2 through 5; otherwise, the return address may be lost and the information in
the mask and processor registers may be ambiguous if an interrupt is acknowl-
edged while executing the operations in these steps. For this reason IEN is ini-
tially cleared and then set after the return address is transferred into PC.

The initial and final operations listed above are referred to as overhead
operations or housekeeping chores. They are not part of the service program
proper but are essential for processing interrupts. All overhead operations can
be implemented by software. This is done by inserting the proper instructions
at the beginning and at the end of each service routine. Some of the overhead
operations can be done automatically by the hardware. The contents of
processor registers can be pushed into a stack by the hardware before branch-
ing to the service routine. Other initial and final operations can be assigned to
the hardware. In this way, it is possible to reduce the time between receipt of
an interrupt and the execution of the instructions that service the interrupt
source.

11-6 Direct Memory Access (DMA)
The transfer of data between a fast storage device such as magnetic disk and
memory is often limited by the speed of the CPU. Removing the CPU from
the path and letting the peripheral device manage the memory buses directly

SECTION 11-6 Direct Memory Access (DMA) 417

Chapter11.qxd 2/2/2007 6:40 PM Page 417

EON
PreMedia

CONFIRMING PGS

would improve the speed of transfer. This transfer technique is called direct
memory access (DMA). During DMA transfer, the CPU is idle and has no
control of the memory buses. A DMA controller takes over the buses to man-
age the transfer directly between the I/O device and memory.

The CPU may be placed in an idle state in a variety of ways. One com-
mon method extensively used in microprocessors is to disable the buses
through special control signals. Figure 11-16 shows two control signals in the
CPU that facilitate the DMA transfer. The bus request (BR) input is used by the
DMA controller to request the CPU to relinquish control of the buses. When
this input is active, the CPU terminates the execution of the current instruc-
tion and places the address bus, the data bus, and the read and write lines into
a high-impedance state. The high-impedance state behaves like an open cir-
cuit, which means that the output is disconnected and does not have a logic
significance (see Sec. 4-3). The CPU activates the bus grant (BG) output to
inform the external DMA that the buses are in the high-impedance state. The
DMA that originated the bus request can now take control of the buses to con-
duct memory transfers without processor intervention. When the DMA ter-
minates the transfer, it disables the bus request line. The CPU disables the bus
grant, takes control of the buses, and returns to its normal operation.

When the DMA takes control of the bus system, it communicates
directly with the memory. The transfer can be made in several ways. In DMA
burst transfer, a block sequence consisting of a number of memory words is
transferred in a continuous burst while the DMA controller is master of the
memory buses. This mode of transfer is needed for fast devices such as mag-
netic disks, where data transmission cannot be stopped or slowed down until
an entire block is transferred. An alternative technique called cycle stealing
allows the DMA controller to transfer one data word at a time, after which it
must return control of the buses to the CPU. The CPU merely delays its oper-
ation for one memory cycle to allow the direct memory I/O transfer to “steal”
one memory cycle.

DMA Controller
The DMA controller needs the usual circuits of an interface to communicate
with the CPU and I/O device. In addition, it needs an address register, a word
count register, and a set of address lines. The address register and address lines

418 CHAPTER ELEVEN Input–Output Organization

cycle stealing

bus request

bus grant

burst transfer

BRBus request

Bus grant BG

CPU

DBUS Address bus

Data bus

Read

Write

High–impedance
(disable)
when BG is
enabled

ABUS

RD

WR

Figure 11-16 CPU bus signals for DMA transfer.

Chapter11.qxd 2/2/2007 6:40 PM Page 418

EON
PreMedia

CONFIRMING PGS

are used for direct communication with the memory The word count register
specifies the number of words that must be transferred. The data transfer may be
done directly between the device and memory under control of the DMA.

Figure 11-17 shows the block diagram of a typical DMA controller. The
unit communicates with the CPU via the data bus and control lines. The reg-
isters in the DMA are selected by the CPU through the address bus by
enabling the DS (DMA select) and RS (register select) inputs. The RD (read)
and WR (write) inputs are bidirectional. When the BG (bus grant) input is 0,
the CPU can communicate with the DMA registers through the data bus to
read from or write to the DMA registers. When BG � 1, the CPU has relin-
quished the buses and the DMA can communicate directly with the memory by
specifying an address in the address bus and activating the RD or WR control.
The DMA communicates with the external peripheral through the request
and acknowledge lines by using a prescribed handshaking procedure.

The DMA controller has three registers: an address register, a word
count register, and a control register. The address register contains an address
to specify the desired location in memory. The address bits go through bus
buffers into the address bus. The address register is incremented after each
word that is transferred to memory. The word count register holds the num-
ber of words to be transferred. This register is decremented by one after each
word transfer and internally tested for zero. The control register specifies the
mode of transfer. All registers in the DMA appear to the CPU as I/O inter-
face registers. Thus the CPU can read from or write into the DMA registers
under program control via the data bus.

SECTION 11-6 Direct Memory Access (DMA) 419

Data bus
buffers

DMA select

Register select

Read

DS

Data bus

In
te

rn
al

 b
us

DMA request

DMA Acknowledge to I/O device

RS

RD

WR

BR

BG

Interrupt

Control
logic

Write

Bus request

Bus grant

Interrupt

Address bus

Address bus
buffers

Address register

Word count register

Control register

Figure 11-17 Block diagram of DMA controller.

Chapter11.qxd 2/2/2007 6:40 PM Page 419

EON
PreMedia

CONFIRMING PGS

The DMA is first initialized by the CPU. After that, the DMA starts and
continues to transfer data between memory and peripheral unit until an entire
block is transferred. The initialization process is essentially a program consist-
ing of I/O instructions that include the address for selecting particular DMA
registers. The CPU initializes the DMA by sending the following information
through the data bus:

1. The starting address of the memory block where data are available (for
read) or where data are to be stored (for write)

2. The word count, which is the number of words in the memory block
3. Control to specify the mode of transfer such as read or write
4. A control to start the DMA transfer

The starting address is stored in the address register. The word count is stored
in the word count register, and the control information in the control register.
Once the DMA is initialized, the CPU stops communicating with the DMA
unless it receives an interrupt signal or if it wants to check how many words
have been transferred.

DMA Transfer
The position of the DMA controller among the other components in a com-
puter system is illustrated in Fig. 11-18. The CPU communicates with the DMA
through the address and data buses as with any interface unit. The DMA has
its own address, which activates the DS and RS lines. The CPU initializes the
DMA through the data bus. Once the DMA receives the start control command,
it can start the transfer between the peripheral device and the memory.

When the peripheral device sends a DMA request, the DMA controller
activates the BR line, informing the CPU to relinquish the buses. The CPU
responds with its BG line, informing the DMA that its buses are disabled. The
DMA then puts the current value of its address register into the address bus,
initiates the RD or WR signal, and sends a DMA acknowledge to the periph-
eral device. Note that the RD and WR lines in the DMA controller are bidi-
rectional. The direction of transfer depends on the status of the BG line. When
BG � 0, the RD and WR are input lines allowing the CPU to communicate
with the internal DMA registers. When BG � 1, the RD and WR are output
lines from the DMA controller to the random-access memory to specify the
read or write operation for the data.

When the peripheral device receives a DMA acknowledge, it puts a
word in the data bus (for write) or receives a word from the data bus (for read).
Thus the DMA controls the read or write operations and supplies the address
for the memory. The peripheral unit can then communicate with memory
through the data bus for direct transfer between the two units while the CPU
is momentarily disabled.

420 CHAPTER ELEVEN Input–Output Organization

Chapter11.qxd 2/2/2007 6:40 PM Page 420

EON
PreMedia

CONFIRMING PGS

For each word that is transferred, the DMA increments its address regis-
ter and decrements its word count register. If the word count does not reach
zero, the DMA checks the request line coming from the peripheral. For a high-
speed device, the line will be active as soon as the previous transfer is com-
pleted. A second transfer is then initiated, and the process continues until the
entire block is transferred. If the peripheral speed is slower, the DMA request
line may come somewhat later. In this case the DMA disables the bus request
line so that the CPU can continue to execute its program. When the periph-
eral requests a transfer, the DMA requests the buses again.

If the word count register reaches zero, the DMA stops any further trans-
fer and removes its bus request. It also informs the CPU of the termination by

SECTION 11-6 Direct Memory Access (DMA) 421

CPU

Direct memory
access (DMA)

controller

I/O
Peripheral

device

random-access
memory (RAM)

Interrupt

BG

BR

RD

Read control

Write control

Data bus

Address bus

Address
select

DMA request

WR Address Data

RD

DS

RS

BR

BG

Interrupt

WR AddressData

RD WR Address Data

DMA acknowledge

Figure 11-18 DMA transfer in a computer system.

Chapter11.qxd 2/2/2007 6:40 PM Page 421

EON
PreMedia

CONFIRMING PGS

means of an interrupt. When the CPU responds to the interrupt, it reads the
content of the word count register. The zero value of this register indicates that
all the words were transferred successfully. The CPU can read this register at
any time to check the number of words already transferred.

A DMA controller may have more than one channel. In this case, each
channel has a request and acknowledge pair of control signals which are con-
nected to separate peripheral devices. Each channel also has its own address
register and word count register within the DMA controller. A priority among
the channels may be established so that channels with high priority are serv-
iced before channels with lower priority.

DMA transfer is very useful in many applications. It is used for fast trans-
fer of information between magnetic disks and memory. It is also useful for
updating the display in an interactive terminal. Typically, an image of the
screen display of the terminal is kept in memory which can be updated under
program control. The contents of the memory can be transferred to the screen
periodically by means of DMA transfer.

11-7 Input��Output Processor (IOP)
Instead of having each interface communicate with the CPU, a computer may
incorporate one or more external processors and assign them the task of com-
municating directly with all I/O devices. An input–output processor (IOP)
may be classified as a processor with direct memory access capability that
communicates with I/O devices. In this configuration, the computer system
can be divided into a memory unit, and a number of processors comprised of
the CPU and one or more IOPS. Each IOP takes care of input and output
tasks, relieving the CPU from the housekeeping chores involved in I/O trans-
fers. A processor that communicates with remote terminals over telephone
and other communication media in a serial fashion is called a data communi-
cation processor (DCF).

The IOP is similar to a CPU except that it is designed to handle the
details of I/O processing. Unlike the DMA controller that must be set up
entirely by the CPU, the IOP can fetch and execute its own instructions. IOP
instructions are specifically designed to facilitate I/O transfers. In addition, the
IOP can perform other processing tasks, such as arithmetic, logic, branching,
and code translation.

The block diagram of a computer with two processors is shown in
Fig. 11-19. The memory unit occupies a central position and can communicate
with each processor by means of direct memory access. The CPU is responsi-
ble for processing data needed in the solution of computational tasks. The IOP
provides a path for transfer of data between various peripheral devices and the
memory unit. The CPU is usually assigned the task of initiating the I/O
program. From then on the IOP operates independent of the CPU and con-
tinues to transfer data from external devices and memory.

422 CHAPTER ELEVEN Input–Output Organization

I/O processing

Chapter11.qxd 2/2/2007 6:40 PM Page 422

EON
PreMedia

CONFIRMING PGS

The data formats of peripheral devices differ from memory and CPU data
formats. The IOP must structure data words from many different sources. For
example, it may be necessary to take four bytes from an input device and pack
them into one 32-bit word before the transfer to memory. Data are gathered in
the IOP at the device rate and bit capacity while the CPU is executing its own
program. After the input data are assembled into a memory word, they are trans-
ferred from IOP directly into memory by “stealing” one memory cycle from the
CPU. Similarly, an output word transferred from memory to the IOP is directed
from the IOP to the output device at the device rate and bit capacity.

The communication between the IOP and the devices attached to it is
similar to the program control method of transfer. Communication with the
memory is similar to the direct memory access method. The way by which the
CPU and IOP communicate depends on the level of sophistication included
in the system. In very-large-scale computers, each processor is independent of
all others and any one processor can initiate an operation. In most computer
systems, the CPU is the master while the IOP is a slave processor. The CPU
is assigned the task of initiating all operations, but I/O instructions are exe-
cuted in the IOP. CPU instructions provide operations to start an I/O transfer
and also to test I/O status conditions needed for making decisions on various
I/O activities. The IOP, in turn, typically asks for CPU attention by means of
an interrupt. It also responds to CPU requests by placing a status word in a
prescribed location in memory to be examined later by a CPU program.
When an I/O operation is desired, the CPU informs the IOP where to find
the I/O program and then leaves the transfer details to the IOP.

Instructions that are read from memory by an IOP are sometimes called
commands, to distinguish them from instructions that are read by the CPU.
Otherwise, an instruction and a command have similar functions. Commands
are prepared by experienced programmers and are stored in memory. The
command words constitute the program for the IOP. The CPU informs
the IOP where to find the commands in memory when it is time to execute
the I/O program.

SECTION 11-7 Input–Output Processor (IOP) 423

commands

Central processing
unit (CPU)

Input–output
processor (IOP)

Peripheral device

I/O bus

M
em

or
y

bu
s

Memory unit
PD PD PD PD

Figure 11-19 Block diagram of a computer with I/O processor.

Chapter11.qxd 2/2/2007 6:40 PM Page 423

EON
PreMedia

CONFIRMING PGS

CPU—IOP Communication
The communication between CPU and IOP may take different forms,
depending on the particular computer considered. In most cases the memory
unit acts as a message center where each processor leaves information for the
other. To appreciate the operation of a typical IOP, we will illustrate by a spe-
cific example the method by which the CPU and IOP communicate. This is
a simplified example that omits many operating details in order to provide an
overview of basic concepts.

The sequence of operations may be carried out as shown in the flowchart
of Fig. 11-20. The CPU sends an instruction to test the IOP path. The IOP

424 CHAPTER ELEVEN Input–Output Organization

CPU operations

Send instruction
to test IOP path

Transfer status word
to memory location

Access memory for
IOP program

Conduct I/O transfers
using DMA; prepare

status report

I/O transfer completed;
interrupt CPU

Transfer status word
to memory location

If status OK., send
start I/O instruction

to IOP

CPU continues with
another program

Request IOP status

Check status word
for correct transfer

Continue

IOP operations

Figure 11-20 CPU-IOP communication.

Chapter11.qxd 2/2/2007 6:40 PM Page 424

EON
PreMedia

CONFIRMING PGS

responds by inserting a status word in memory for the CPU to check. The bits
of the status word indicate the condition of the IOP and I/O device, such as
IOP overload condition, device busy with another transfer, or device ready
for I/O transfer. The CPU refers to the status word in memory to decide what
to do next. If all is in order, the CPU sends the instruction to start I/O trans-
fer. The memory address received with this instruction tells the IOP where to
find it? program.

The CPU can now continue with another program while the IOP is
busy with the I/O program. Both programs refer to memory by means of
DMA transfer. When the IOP terminates the execution of its program, it
sends an interrupt request to the CPU. The CPU responds to the interrupt
by issuing an instruction to read the status from the IOP. The IOP responds
by placing the contents of its status report into a specified memory location.
The status word indicates whether the transfer has been completed or if any
errors occurred during the transfer. From inspection of the bits in the status
word, the CPU determines if the I/O operation was completed satisfactorily
without errors.

The IOP takes care of all data transfers between several I/O units and
the memory while the CPU is processing another program. The IOP and
CPU are competing for the use of memory, so the number of devices that can
be in operation is limited by the access time of the memory. It is not possible
to saturate the memory by I/O devices in most systems, as the speed of most
devices is much slower than the CPU. However, some very fast units, such as
magnetic disks, can use an appreciable number of the available memory
cycles. In that case, the speed of the CPU may deteriorate because it will often
have to wait for the IOP to conduct memory transfers.

IBM 370 I/O Channel
The I/O processor in the IBM 370 computer is called a channel. A typical com-
puter system configuration includes a number of channels with each channel
attached to one or more I/O devices. There are three types of channels: mul-
tiplexer, selector, and block-multiplexer. The multiplexer channel can be con-
nected to a number of slow- and medium-speed devices and is capable of
operating with a number of I/O devices simultaneously. The selector channel
is designed to handle one I/O operation at a time and is normally used to con-
trol one high-speed device. The block-multiplexer channel combines the fea-
tures of both the multiplexer and selector channels. It provides a connection
to a number of high-speed devices, but all I/O transfers are conducted with an
entire block of data as compared to a multiplexer channel, which can transfer
only one byte at a time.

The CPU communicates directly with the channels through dedicated
control lines and indirectly through reserved storage areas in memory.
Figure 11-21 shows the word formats associated with the channel operation.
The I/O instruction format has three fields: operation code, channel address,

SECTION 11-7 Input–Output Processor (IOP) 425

Chapter11.qxd 2/2/2007 6:40 PM Page 425

EON
PreMedia

CONFIRMING PGS

and device address. The computer system may have a number of channels,
and each is assigned an address. Similarly, each channel may be connected to
several devices and each device is assigned an address. The operation code
specifies one of eight I/O instructions: start I/O, start I/O fast release, test
I/O, clear I/O, halt I/O, halt device, test channel, and store channel identifi-
cation. The addressed channel responds to each of the I/O instructions and
executes it. It also sets one of four condition codes in a processor register
called PSW (processor status word). The CPU can check the condition code
in the PSW to determine the result of the I/O operation. The meaning of the
four condition codes is different for each I/O instruction. But, in general, they
specify whether the channel or the device is busy, whether or not it is opera-
tional, whether interruptions are pending, if the I/O operation had started
successfully, and whether a status word was stored in memory by the channel.

The format of the channel status word is shown in Fig. 11-21(b). It is
always stored in location 64 in memory. The key field is a protection mecha-
nism used to prevent unauthorized access by one user to information that
belongs to another user or to the operating system. The address field in the sta-
tus word gives the address of the last command word used by the channel. The
count field gives the residual count when the transfer was terminated. The
count field will show zero if the transfer was completed successfully. The sta-
tus field identifies the conditions in the device and the channel and any errors
that occurred during the transfer.

The difference between the start I/O and start I/O fast release instruc-
tions is that the latter requires less CPU time for its execution. When the

426 CHAPTER ELEVEN Input–Output Organization

Operation
code

Channel
address

Device
address

Key Address Status Count

Command
code Data Address Flags Count

(a) I/O instruction format

(b) Channel status word format

(c) Channel command word format

Figure 11-21 IBM 370 I/O related word formats.

Chapter11.qxd 2/2/2007 6:40 PM Page 426

EON
PreMedia

CONFIRMING PGS

channel receives one of these two instructions, it refers to memory location 72
for the address of the first channel command word (CCW). The format of the
channel command word is shown in Fig. 11-21(c). The data address field spec-
ifies the first address of a memory buffer and the count field gives the number
of bytes involved in the transfer. The command field specifies an I/O opera-
tion and the flag bits provide additional information for the channel. The com-
mand field corresponds to an operation code that specifies one of six basic
types of I/O operations:

1. Write. Transfer data from memory to I/O device.
2. Read. Transfer data from I/O device to memory.
3. Read backwards. Read magnetic tape with tape moving backward.
4. Control. Used to initiate an operation not involving transfer of data,

such as rewinding of tape or positioning a disk-access mechanism.
5. Sense. Informs the channel to transfer its channel status word to mem-

ory location 64.
6. Transfer in channel. Used instead of a jump instruction. Here the data

address field specifies the address of the next command word to be exe-
cuted by the channel.

An example of a channel program is shown in Table 11-3. It consists of
three command words. The first causes a transfer into a magnetic tape of 60
bytes from memory starting at address 4000. The next two command words
perform a similar function with a different portion of memory and byte count.
The six flags in each control word specify certain interrelations between the
command words. The first flag is set to 1 in the first command word to spec-
ify “data chaining.” It results in combining the 60 bytes from the first com-
mand word with the 20 bytes of its successor into one record of 80 bytes. The
80 bytes are written on tape without any separation or gaps even though two
memory sections were used. The second flag is set to 1 in the second com-
mand word to specify “command chaining.” It informs the channel that the
next command word will use the same I/O device, in this case, the tape. The
channel informs the tape unit to start inserting a record gap on the tape and
proceeds to read the next command word from memory. The 40 bytes of the

SECTION 11-7 Input–Output Processor (IOP) 427

TABLE 11-3 IBM-370 Channel Program Example

Command Address Flags Count

Write tape 4000 100000 60
Write tape 6000 010000 20
Write tape 3000 000000 40

Chapter11.qxd 2/2/2007 6:40 PM Page 427

EON
PreMedia

CONFIRMING PGS

third command word are then written on tape as a separate record. When all
the flags are equal to zero, it signifies the end of I/O operations for the par-
ticular I/O device.

A memory map showing all pertinent information for I/O processing is
illustrated in Fig. 11-22. The operation begins when the CPU program encoun-
ters a start I/O instruction. The IOP then goes to memory location 72 to obtain
a channel address word. This word contains the starting address of the I/O
channel program. The channel then proceeds to execute the program specified
by the channel command words. The channel constructs a status word during

428 CHAPTER ELEVEN Input–Output Organization

Memory unit

Channel status word

Channel address word 72

I/O channel
program

CPU
program

64

Channel command word 1

Channel command word 2

Channel command word 3

Start I/O instruction

Figure 11-22 Location of information in memory for I/O operations in the
IBM 370.

Chapter11.qxd 2/2/2007 6:40 PM Page 428

EON
PreMedia

CONFIRMING PGS

the transfer and stores it in location 64. Upon interruption, the CPU can refer
to memory location 64 for the status word.

Intel 8089 IOP
The Intel 8089 I/O processor is contained in a 40-pin integrated circuit pack-
age. Within the 8089 are two independent units called channels. Each channel
combines the general characteristics of a processor unit with those of a direct
memory access controller. The 8089 is designed to function as an IOP in a
microcomputer system where the Intel 8086 microprocessor is used as the
CPU. The 8086 CPU initiates an I/O operation by building a message in
memory that describes the function to be performed. The 8089 IOP reads the
message from memory, carries out the operation, and notifies the CPU when
it has finished.

In contrast to the IBM 370 channel, which has only six basic I/O com-
mands, the 8089 IOP has 50 basic instructions that can operate on individual
bits, on bytes, or 16-bit words. The IOP can execute programs in a manner
similar to a CPU except that the instruction set is specifically chosen to pro-
vide efficient input–output processing. The instruction set includes general
data transfer instructions, basic arithmetic and logic operations, conditional
and unconditional branch operations, and subroutine call and return capabil-
ities. The set also includes special instructions to initiate DMA transfers and
issue an interrupt request to the CPU. It provides efficient data transfer
between any two components attached to the system bus, such as I/O to mem-
ory, memory to memory, or I/O to I/O.

A microcomputer system using the Intel 8086/8089 pair of integrated
circuits is shown in Fig. 11-23. The 8086 functions as the CPU and the 8089
as the IOP. The two units share a common memory through a bus controller
connected to a system bus, which is called a “multibus” by Intel. The IOP
uses a local bus to communicate with various interface units connected to
I/O devices. The CPU communicates with the IOP by enabling the channel
attention line. The select line is used by the CPU to select one of two channels
in the 8089. The IOP gets the attention of the CPU by sending an interrupt
request.

The CPU and IOP communicate with each other by writing messages
for one another in system memory. The CPU prepares the message area and
signals the IOP by enabling the channel attention line. The IOP reads the
message, performs the required I/O functions, and executes the appropriate
channel program. When the channel has completed its program, it issues an
interrupt request to the CPU.

The communication scheme consists of program sections called “blocks,”
which are stored in memory as shown in Fig. 11-24. Each block contains control
and parameter information as well as an address pointer to its successor block.
The address of the control block is passed to each IOP channel during initial-
ization. The busy flag indicates whether the IOP is busy or ready to perform

SECTION 11-7 Input–Output Processor (IOP) 429

Chapter11.qxd 2/2/2007 6:40 PM Page 429

EON
PreMedia

CONFIRMING PGS

a new I/O operation. The CCW (channel command word) is specified by the
CPU to indicate the type of operation required from the IOP. The CCW in the
8089 does not have the same meaning as the command word in the IBM chan-
nel. The CCW here is more like an I/O instruction that specifies an operation
for the IOP, such as start operation, suspend operation, resume operation, and
halt I/O program. The parameter block contains variable data that the IOP

430 CHAPTER ELEVEN Input–Output Organization

8086
CPU

Bus
controller

System

bus

Local bus

Interface Interface

Output deviceInput device

Memory unit

8089
IOP

In
te

rr
up

t

Se
le

ct

C
ha

nn
el

at
te

nt
io

n

Control block Parameter block Task block

8089
IOP

program

Busy CCW TB address

Memory address

Byte count

Device address

Track and sector

Status

Figure 11-23 Intel 8086/8089 microcomputer system block diagram.

Figure 11-24 Location of information in memory for I/O operations in the Intel
8086/8089 microcomputer system.

Chapter11.qxd 2/2/2007 6:40 PM Page 430

EON
PreMedia

CONFIRMING PGS

program must use in carrying out its task. The task block contains the actual
program to be executed in the IOP.

The CPU and IOP work together through the control and parameter
blocks. The CPU obtains use of the shared memory after checking the busy
flag to ensure that the IOP is available. The CPU then fills in the informa-
tion in the parameter block and writes a “start operation” command in the
CCW. After the communication blocks have been set up, the CPU enables
the channel attention signal to inform the IOP to start its I/O operation.
The CPU then continues with another program. The IOP responds to the
channel attention signal by placing the address of the control block into its
program counter. The IOP refers to the control block and sets the busy flag.
It then checks the operation in the CCW. The PB (parameter block) address
and TB (task block) address are then transferred into internal IOP registers.
The IOP starts executing the program in the task block using the informa-
tion in the parameter block. The entries in the parameter block depend on
the I/O device. The parameters listed in Fig. 11-24 are suitable for data
transfer to or from a magnetic disk. The memory address specifies the
beginning address of a memory buffer. The byte count gives the number of
bytes to be transferred. The device address specifies the particular I/O
device to be used. The track and sector numbers locate the data on the disk.
When the I/O operation is completed, the IOP stores its status bits in the
status word location of the parameter block and interrupts the CPU. The
CPU can refer to the status word to check if the transfer has been completed
satisfactorily.

11-8 Serial Communication
A data communication processor is an I/O processor that distributes and collects
data from many remote terminals connected through telephone and other
communication lines. It is a specialized I/O processor designed to communi-
cate directly with data communication networks. A communication network
may consist of any of a wide variety of devices, such as printers, interactive
display devices, digital sensors, or a remote computing facility. With the use of
a data communication processor, the computer can service fragments of each
network demand in an interspersed manner and thus have the apparent
behavior of serving many users at once. In this way the computer is able to
operate efficiently in a time-sharing environment.

The most striking difference between an I/O processor and a data com-
munication processor is in the way the processor communicates with the I/O
devices. An I/O processor communicates with the peripherals through a com-
mon I/O bus that is comprised of many data and control lines. All peripher-
als share the common bus and use it to transfer information to and from the
I/O processor. A data communication processor communicates with each ter-
minal through a single pair of wires. Both data and control information are

SECTION 11-8 Serial Communication 431

data communica-
tion processor

Chapter11.qxd 2/2/2007 6:40 PM Page 431

EON
PreMedia

CONFIRMING PGS

transferred in a serial fashion with the result that the transfer rate is much
slower. The task of the data communication processor is to transmit and col-
lect digital information to and from each terminal, determine if the informa-
tion is data or control and respond to all requests according to predetermined
established procedures. The processor, obviously, must also communicate
with the CPU and memory in the same manner as any I/O processor.

The way that remote terminals are connected to a data communication
processor is via telephone lines or other public or private communication facil-
ities. Since telephone lines were originally designed for voice communication
and computers communicate in terms of digital signals, some form of conver-
sion must be used. The converters are called data sets, acoustic couplers, or modems
(from “modulator-demodulator”). A modem converts digital signals into audio
tones to be transmitted over telephone lines and also converts audio tones from
the line to digital signals for machine use. Various modulation schemes as well
as different grades of communication media and transmission speeds are used.
A communication line may be connected to a synchronous or asynchronous
interface, depending on the transmission method of the remote terminal. An
asynchronous interface receives serial data with start and stop bits in each char-
acter as shown in Fig. 11-7. This type of interface is similar to the asynchronous
communication interface unit presented in Fig. 11-8.

Synchronous transmission does not use start-stop bits to frame characters
and therefore makes more efficient use of the communication link. High-
speed devices use synchronous transmission to realize this efficiency. The
modems used in synchronous transmission have internal clocks that are set to
the frequency that bits are being transmitted in the communication line. For
proper operation, it is required that the clocks in the transmitter and receiver
modems remain synchronized at all times. The communication line, however,
contains only the data bits from which the clock information must be
extracted. Frequency synchronization is achieved by the receiving modem
from the signal transitions that occur in the received data. Any frequency shift
that may occur between the transmitter and receiver clocks is continuously
adjusted by maintaining the receiver clock at the frequency of the incoming
bit stream. The modem transfers the received data together with the clock to
the interface unit. The interface or terminal on the transmitter side also uses
the clock information from its modem. In this way, the same bit rate is main-
tained in both transmitter and receiver.

Contrary to asynchronous transmission, where each character can be sent
separately with its own start and stop bits, synchronous transmission must send
a continuous message in order to maintain synchronism. The message consists
of a group of bits transmitted sequentially as a block of data. The entire block
is transmitted with special control characters at the beginning and end of the
block. The control characters at the beginning of the block supply the infor-
mation needed to separate the incoming bits into individual characters.

One of the functions of the data communication processor is to check for
transmission errors. An error can be detected by checking the parity in each

432 CHAPTER ELEVEN Input–Output Organization

modem

Chapter11.qxd 2/2/2007 6:40 PM Page 432

EON
PreMedia

CONFIRMING PGS

character received. Another procedure used in asynchronous terminals
involving a human operator is to echo the character. The character transmitted
from the keyboard to the computer is recognized by the processor and retrans-
mitted to the terminal printer. The operator would realize that an error
occurred during transmission if the character printed is not the same as the
character whose key he has struck.

In synchronous transmission, where an entire block of characters is
transmitted, each character has a parity bit for the receiver to check. After
the entire block is sent, the transmitter sends one more character that con-
stitutes a parity over the length of the message. This character is called a lon-
gitudinal redundancy check (LRC) and is the accumulation of the
exclusive-OR of all transmitted characters. The receiving station calculates
the LRC as it receives characters and compares it with the transmitted LRC.
The calculated and received LRC should be equal for error-free messages. If
the receiver finds an error in the transmitted block, it informs the sender to
retransmit the same block once again. Another method used for checking
errors in transmission is the cyclic redundancy check (CRC). This is a poly-
nomial code obtained from the message bits by passing them through a feed-
back shift register containing a number of exclusive-OR gates. This type of
code is suitable for detecting burst errors occurring in the communication
channel.

Data can be transmitted between two points in three different modes:
simplex, half-duplex, or full-duplex. A simplex line carries information in one
direction only. This mode is seldom used in data communication because the
receiver cannot communicate with the transmitter to indicate the occurrence
of errors. Examples of simplex transmission are radio and television broad-
casting.

A half-duplex transmission system is one that is capable of transmitting in
both directions but data can be transmitted in only one direction at a time. A
pair of wires is needed for this mode. A common situation is for one modem
to act as the transmitter and the other as the receiver. When transmission in
one direction is completed, the role of the modems is reversed to enable trans-
mission in the reverse direction. The time required to switch a half-duplex line
from one direction to the other is called the turnaround time.

A full-duplex transmission can send and receive data in both directions
simultaneously. This can be achieved by means of a four-wire link, with a dif-
ferent pair of wires dedicated to each direction of transmission. Alternatively,
a two-wire circuit can support full-duplex communication if the frequency
spectrum is subdivided into two nonoverlapping frequency bands to create
separate receive and transmit channels in the same physical pair of wires.

The communication lines, modems, and other equipment used in the
transmission of information between two or more stations is called a data link.
The orderly transfer of information in a data link is accomplished by means
of a protocol. A data link control protocol is a set of rules that are followed by
interconnecting computers and terminals to ensure the orderly transfer of

SECTION 11-8 Serial Communication 433

full-duplex

block transfer

CRC

protocol

Chapter11.qxd 2/2/2007 6:40 PM Page 433

EON
PreMedia

CONFIRMING PGS

information. The purpose of a data link protocol is to establish and terminate
a connection between two stations, to identify the sender and receiver, to
ensure that all messages are passed correctly without errors, and to handle all
control functions involved in a sequence of data transfers. Protocols are
divided into two major categories according to the message-framing technique
used. These are character-oriented protocol and bit-oriented protocol.

Character-Oriented Protocol
The character-oriented protocol is based on the binary code of a character set.
The code most commonly used is ASCII (American Standard Code for
Information Interchange). It is a 7-bit code with an eighth bit used for parity.
The code has 128 characters, of which 95 are graphic characters and 33 are
control characters. The graphic characters include the upper- and lowercase
letters, the ten numerals, and a variety of special symbols. A list of the ASCII
characters can be found in Table 11-1. The control characters are used for the
purpose of routing data, arranging the test in a desired format, and for the lay-
out of the printed page. The characters that control the transmission are called
communication control characters. These characters are listed in Table 11-4. Each
character has a 7-bit code and is referred to by a three-letter symbol. The role
of each character in the control of data transmission is stated briefly in the
function column of the table.

The SYN character serves as synchronizing agent between the transmit-
ter and receiver. When the 7-bit ASCII code is used with an odd-parity bit in
the most significant position, the assigned SYN character has the 8-bit code
00010110 which has the property that, upon circular shifting, it repeats itself
only after a full 8-bit cycle. When the transmitter starts sending 8-bit charac-
ters, it sends a few characters first and then sends the actual message. The ini-
tial continuous string of bits accepted by the receiver is checked for a SYN
character. In other words, with each clock pulse, the receiver checks the last

434 CHAPTER ELEVEN Input–Output Organization

TABLE 11-4 ASCII Communication Control Characters

Code Symbol Meaning Function

0010110 SYN Synchronous idle Establishes synchronism
0000001 SOH Start of heading Heading of block message
0000010 STX Start of text Precedes block of text
0000011 ETX End of text Terminates block of text
0000100 EOT End of transmission Concludes transmission
0000110 ACK Acknowledge Affirmative acknowledgement
0010101 NAK Negative acknowledge Negative acknowledgement
0000101 ENQ Inquiry Inquire if terminal is on
0010111 ETB End of transmission block End of block of data
0010000 DLE Data link escape Special control character

SYN character

Chapter11.qxd 2/2/2007 6:40 PM Page 434

EON
PreMedia

CONFIRMING PGS

eight bits received. If they do not match the bits of the SYN character, the
receiver accepts the next bit, rejects the previous high-order bit, and again
checks the last eight bits received for a SYN character. This is repeated after
each clock puise and bit received until a SYN character is recognized. Once a
SYN character is detected, the receiver has framed a character. From here on
the receiver counts every eight bits and accepts them as a single character.
Usually, the receiver checks two consecutive SYN characters to remove any
doubt that the first did not occur as a result of a noise signal on the line.
Moreover, when the transmitter is idle and does not have any message char-
acters to send, it sends a continuous string of SYN characters. The receiver rec-
ognizes these characters as a condition for synchronizing the line and goes into
a synchronous idle state. In this state, the two units maintain bit and character
synchronism even though no meaningful information is communicated.

Messages are transmitted through the data link with an established for-
mat consisting of a header field, a text field, and an error-checking field. A typ-
ical message format for a character-oriented protocol is shown in Fig. 11-25.
The two SYN characters assure proper synchronization at the start of the mes-
sage. Following the SYN characters is the header, which starts with an SOH
(start of heading) character. The header consists of address and control infor-
mation. The STX character terminates the header and signifies the beginning
of the text transmission. The text portion of the message is variable in length
and may contain any ASCII characters except the communication control
characters. The text field is terminated with the ETX character. The last field
is a block check character (BCC) used for error checking. It is usually either a
longitudinal redundancy check (LRC) or a cyclic redundancy check (CRC).

The receiver accepts the message and calculates its own BCC. If the
BCC transmitted does not agree with the BCC calculated by the receiver, the
receiver responds with a negative acknowledge (NAK) character. The message
is then retransmitted and checked again. Retransmission will be typically
attempted several times before it is assumed that the line is faulty. When the
transmitted BCC matches the one calculated by the receiver, the response is
a positive acknowledgment using the ACK character.

Transmission Example
In order to appreciate the function of a data communication processor, let us
illustrate by a specific example the method by which a terminal and the
processor communicate. The communication with the memory unit and CPU
is similar to any I/O processor.

SECTION 11-8 Serial Communication 435

SYN SYN SOH Header STX Text ETX BCC

Figure 11-25 Typical message format for character-oriented protocol.

Chapter11.qxd 2/2/2007 6:40 PM Page 435

EON
PreMedia

CONFIRMING PGS

A typical message that might be sent from a terminal to the processor is
listed in Table 11-5. A look at this message reveals that there are a number of
control characters used for message formation. Each character, including the
control characters, is transmitted serially as an 8-bit binary code which con-
sists of the 7-bit ASCII code plus an odd parity bit in the eighth most signifi-
cant position. The two SYN characters are used to synchronize the receiver
and transmitter. The heading starts with the SOH character and continues
with two characters that specify the address of the terminal. In this particular
example, the address is T4, but in general it can have any set of two or more
graphic characters. The STX character terminates the heading and signifies
the beginning of the text transmission. The text data of concern here is
“request balance of account number 1234.” The individual characters for this
message are not listed in the table because they will take too much space. It
must be realized, however, that each character in the message has an 8-bit
code and that each bit is transmitted serially. The ETX control character sig-
nifies the termination of the text characters. The next character following ETX
is a longitudinal redundancy check (LRC). Each bit in this character is a par-
ity bit calculated from all the bits in the same column in the code section of
the table.

The data communication processor receives this message and proceeds to
analyze it. It recognizes terminal T4 and stores the text associated with the mes-
sage. While receiving the characters, the processor checks the parity in each
character and also computes the longitudinal parity. The computed LRC is
compared with the LRC character received. If the two match, a positive
acknowledgment (ACK) is sent back to the terminal. If a mismatch exists, a

436 CHAPTER ELEVEN Input–Output Organization

TABLE 11-5 Typical Transmission from a Terminal to Processor

Code Symbol Comments

0001 0110 SYN First sync character
0001 0110 SYN Second sync character
0000 0001 SOH Start of heading
0101 0100 T Address of terminal is T4
0011 0100 4
0000 0010 STX Start of text transmission
0101 0010
0100 0101 request Text sent is a request to respond with the balance of

� balance account number 1234
� of account
� No. 1234

1011 0011
0011 0100
1000 0011 ETX End of text transmission
0111 0000 LRC Longitudinal parity character

Chapter11.qxd 2/2/2007 6:40 PM Page 436

EON
PreMedia

CONFIRMING PGS

negative acknowledgment (NAK) is returned to the terminal, which would
initiate a retransmission of the same block. If the processor finds the message
without errors, it transfers the message into memory and interrupts the CPU.
When the CPU acknowledges the interrupt, it analyzes the message and prepa-
res a text message for responding to the request. The CPU sends an instruction
to the data communication processor to send the message to the terminal.

A typical response from processor to terminal is listed in Table 11-6.
After two SYN characters, the processor acknowledges the previous message
with an ACK character. The line continues to idle with SYN character waiting
for the response to come. The message received from the CPU is arranged in
the proper format by the processor by inserting the required control charac-
ters before and after the text. The message has the heading SOH and the
address of the terminal T4. The text message informs the terminal that the
balance is $100. An LRC character is computed and sent to the terminal. If
the terminal responds with a NAK character, the processor retransmits the
message.

While the processor is taking care of this terminal it is busy processing
other terminals as well. Since the characters are received in a serial fashion, it
takes a certain amount of time to receive and collect an 8-bit character. During

SECTION 11-8 Serial Communication 437

TABLE 11-6 Typical Transmission from Processor to Terminal

Code Symbol Comments

0001 0110 SYN First sync character
0001 0110 SYN Second sync character
1000 0110 ACK Processor acknowledges previous message
0001 0110 SYN Line is idling

� -
� -
� -

0001 0110 SYN Line is idling
0000 0001 SOH Start of heading
0101 0100 T Address of terminal is T4
0011 0100 4
0000 0010 STX Start of text transmission
1100 0010
1100 0001 balance Text sent is a response from the computer giving the

� is balance of account
� $100.00
�
�

1011 0000
1000 0011 ETX End of text transmission
1101 0101 LRC Longitudinal parity character

Chapter11.qxd 2/2/2007 6:40 PM Page 437

EON
PreMedia

CONFIRMING PGS

this time the processor is multiplexing all other communication lines and
services each one in turn. The speed of most remote terminals is extremely
slow compared to the processor speed. This property allows multiplexing of
many users to achieve greater efficiency in a time-sharing system. This also
allows many users to operate simultaneously while each is being sampled at
speeds comparable to normal human response.

Data Transparency
The character-oriented protocol was originally developed to communicate
with keyboard, printer, and display devices that use alphanumeric charac-
ters exclusively. As the data communication field expanded, it became nec-
essary to transmit binary information which is not ASCII text. This
happens, for example, when two remote computers send programs and data
to each other over a communication channel. An arbitrary bit pattern in the
text message becomes a problem in the character-oriented protocol. This is
because any 8-bit pattern belonging to a communication control character
will be interpreted erroneously by the receiver. For example, if the binary
data in the text portion of the message has the 8-bit pattern 10000011, the
receiver will interpret this as an ETX character and assume that it reached
the end of the text field. When the text portion of the message is variable
in length and contains bits that are to be treated without reference to any
particular code, it is said to contain transparent data. This feature requires
that the character recognition logic of the receiver be turned off so that data
patterns in the text field are not accidentally interpreted as communication
control information.

Data transparency is achieved in character-oriented protocols by insert-
ing a DLE (data link escape) character before each communication control
character. Thus, the start of heading is detected from the double character
DLE SOH, and the text field is terminated with the double character DLE
ETX. If the DLE bit pattern 00010000 occurs in the text portion of the mes-
sage, the transmitter inserts another DLE bit pattern following it. The receiver
removes all DLE characters and then checks the next 8-bit pattern. If it is
another DLE bit pattern, the receiver considers it as part of the text and con-
tinues to receive text. Otherwise, the receiver takes the following 8-bit pattern
to be a communication control character.

The achievement of data transparency by means of the DLE character is
inefficient and somewhat complicated to implement. Therefore, other proto-
cols have been developed to make the transmission of transparent data more
efficient. One protocol used by Digital Equipment Corporation employs a
byte count field that gives the number of bytes in the message that follows.
The receiver must then count the number of bytes received to reach the end
of the text field. The protocol that has been mostly used to solve the trans-
parency problem (and other problems associated with the character-oriented
protocol) is the bit-oriented protocol.

438 CHAPTER ELEVEN Input–Output Organization

DLE character

Chapter11.qxd 2/2/2007 6:40 PM Page 438

EON
PreMedia

CONFIRMING PGS

Bit-Oriented Protocol
The bit-oriented protocol does not use characters in its control field and is
independent of any particular code. It allows the transmission of serial bit
stream of any length without the implication of character boundaries.
Messages are organized in a specific format called a frame. In addition to the
information field, a frame contains address, control, and error-checking
fields. The frame boundaries are determined from a special 8-bit number
called a flag. Examples of bit-oriented protocols are SDLC (synchronous
data link control) used by IBM, HDLC (high-level data link control) adopted
by the International Standards Organization, and ADCCP (advanced data
communication control procedure) adopted by the American National
Standards Institute.

Any data communication link involves at least two participating stations.
The station that has responsibility for the data link and issues the commands
to control the link is called the primary station. The other station is a second-
ary station. Bit-oriented protocols assume the presence of one primary station
and one or more secondary stations. All communication on the data link is
from the primary station to one or more secondary stations, or from a sec-
ondary station to the primary station.

The frame format for the bit-oriented protocol is shown in Fig. 11-26.
A frame starts with the 8-bit flag 01111110 followed by an address and control
sequence. The information field is not restricted in format or content and can
be of any length. The frame check field is a CRC (cyclic redundancy check)
sequence used for detecting errors in transmission. The ending flag indicates to
the receiving station that the 16 bits just received constitute the CRC bits. The
ending frame can be followed by another frame, another flag, or a sequence of
consecutive 1’s. When two frames follow each other, the intervening flag is
simultaneously the ending flag of the first frame and the beginning flag of the
next frame. If no information is exchanged, the transmitter sends a series of
flags to keep the line in the active state. The line is said to be in the idle state
with the occurrence of 15 or more consecutive 1’s. Frames with certain control
messages are sent without an information field. A frame must have a minimum
of 32 bits between two flags to accommodate the address, control, and frame
check fields. The maximum length depends on the condition of the communi-
cation channel and its ability to transmit long messages error-free.

To prevent a flag from occurring in the middle of a frame, the bit-oriented
protocol uses a method called zero insertion. This requires that a 0 be inserted by

SECTION 11-8 Serial Communication 439

Flag
01111110

Address
8 bits

Control
8 bits

Information
any number of bits

Frame check
16 bits

Flag
01111110

Figure 11-26 Frame format for bit-oriented protocol.

8-bit flag

zero insertion

Chapter11.qxd 2/2/2007 6:40 PM Page 439

EON
PreMedia

CONFIRMING PGS

the transmitting station after any succession of five continuous 1’s. The receiver
always removes a 0 that follows a succession of five 1’s. Thus the bit pattern
0111111 is transmitted as 01111101 and restored by the receiver to its original
value by removal of the 0 following the five 1’s. As a consequence, no pattern
of 01111110 is ever transmitted between the beginning and ending flags.

Following the flag is the address field, which is used by the primary sta-
tion to designate the secondary station address. When a secondary station
transmits a frame, the address tells the primary station which secondary sta-
tion originated the frame. An address field of eight bits can specify up to 256
addresses. Some bit-oriented protocols permit the use of an extended address
field. To do this, the least significant bit of an address byte is set to 0 if another
address byte follows. A 1 in the least significant bit of a byte is used to recog-
nize the last address byte.

Following the address field is the control field. The control field comes
in three different formats, as shown in Fig. 11-27. The information transfer for-
mat is used for ordinary data transmission. Each frame transmitted in this for-
mat contains send and receive counts. A station that transmits sequenced
frames counts and numbers each frame. This count is given by the send count
Ns. A station receiving sequenced frames counts each error-free frame that it
receives. This count is given by the receive count Nr. The Nr count advances
when a frame is checked and found to be without errors. The receiver con-
firms accepted numbered information frames by returning its Nr count to the
transmitting station.

The P/F bit is used by the primary station to poll a secondary station to
request that it initiate transmission. It is used by the secondary station to

440 CHAPTER ELEVEN Input–Output Organization

1

0Information transfer: P/F

P/F

Ns

Ns

Nr

Nr

2 3 4 5 6 7 8

1 0 Code

Code
Send count
Receive count

Poll/final
Binary code

Code Code

Supervisory: P/F Nr

1 1Unnumbered: P/F

Figure 11-27 Control field format in bit-oriented protocol.

control field

Chapter11.qxd 2/2/2007 6:40 PM Page 440

EON
PreMedia

CONFIRMING PGS

indicate the final transmitted frame. Thus the P/F field is called P (poll) when
the primary station is transmitting but is designated as F (final) when a sec-
ondary station is transmitting. Each frame sent to the secondary station from
the primary station has a P bit set to 0. When the primary station is finished
and ready for the secondary station to respond, the P bit is set to 1. The sec-
ondary station then responds with a number of frames in which the F bit is set
to 0. When the secondary station sends the last frame, it sets the F bit to 1.
Therefore, the P/F bit is used to determine when data transmission from a sta-
tion is finished.

The supervisory format of the control field is recognized from the first
two bits being 1 and 0. The next two bits indicate the type of command. This
follows by a P/F bit and a receive sequence frame count. The frames of the
supervisory format do not carry an information field. They are used to assist
in the transfer of information in that they confirm the acceptance of preceding
frames carrying information, convey ready or busy conditions, and report
frame numbering errors.

The unnumbered format is recognized from the first two bits being 11.
The five code bits available in this format can specify up to 32 commands and
responses. The primary station uses the control field to specify a command for
a secondary station. The secondary station uses the control field to transmit a
response to the primary station. Unnumbered-format frames are employed for
initialization of link functions, reporting procedural errors, placing stations in
a disconnected mode, and other data link control operations.

SECTION 11-8 Serial Communication 441

PROBLEMS

11-1. The addresses assigned to the four registers of the I/O interface of Fig. 11-2
are equal to the binary equivalent of 12, 13, 14, and 15. Show the exter-
nal circuit that must be connected between an 8-bit I/O address from
the CPU and the CS, RS1, and RS0 inputs of the interface.

11-2. Six interface units of the type shown in Fig. 11-2 are connected to a CPU
that uses an I/O address of eight bits. Each one of the six chip select (CS)
inputs is connected to a different address line. Thus the high-order address
line is connected to the CS input of the first interface unit and the sixth
address line is connected to the CS input of the sixth interface unit. The two
low-order address lines are connected to the RS1 and RS0 of all six inter-
face units. Determine the 8-bit address of each register in each interface.

11-3. List four peripheral devices that produce an acceptable output for a person
to understand.

11-4. Write your full name in ASCII using eight bits per character with the
leftmost bit always 0. Include a space between names and a period after a
middle initial.

Chapter11.qxd 2/2/2007 6:40 PM Page 441

EON
PreMedia

CONFIRMING PGS

11-5. What is the difference between isolated I/O and memory-mapped I/O?
What are the advantages and disadvantages of each?

11-6. Indicate whether the following constitute a control, status, or data transfer
commands.
a. Skip next instruction if flag is set.
b. Seek a given record on a magnetic disk.
c. Check if I/O device is ready.
d. Move printer paper to beginning of next page.
e. Read interface status register.

11-7. A commercial interface unit uses different names for the handshake lines
associated with the transfer of data from the I/O device into the interface
unit. The interface input handshake line is labeled STB (strobe), and the
interface output handshake line is labeled IBF (input buffer full). A low-level
signal on STB loads data from the I/O bus into the interface data register. A
high-level signal on IBF indicates that the data item has been accepted by
the interface. IBF goes low after an I/O read signal from the CPU when it
reads the contents of the data register.
a. Draw a block diagram showing the CPU, the interface, and the I/O

device together with the pertinent interconnections among the three
units.

b. Draw a timing diagram for the handshaking transfer.
c. Obtain a sequence-of-events flowchart for the transfer from the device to

the interface and from the interface to the CPU.
11-8. A CPU with a 20-MHz clock is connected to a memory unit whose access

time is 40 ns. Formulate a read and write timing diagrams using a READ
strobe and a WRITE strobe. Include the address in the timing diagram.

11-9. The asynchronous communication interface shown in Fig. 11-8 is connected
between a CPU and a printer. Draw a flowchart that describes the sequence
of operations in the transmitter portion of the interface when the CPU sends
characters to be printed.

11-10. Give at least six status conditions for the setting of individual bits in the sta-
tus register of an asynchronous communication interface.

11-11. How many bits are there in the transmitter shift register of Fig. 11-8 when
the interface is attached to a terminal that needs one stop bit? List the bits
in the shift register when the letter W is transmitted using ASCII with even
parity.

11-12. How many characters per second can be transmitted over a 1200-baud line
in each of the following modes? (Assume a character code of eight bits.)
a. Synchronous serial transmission.
b. Asynchronous serial transmission with two stop bits.
c. Asynchronous serial transmission with one stop bit.

11-13. Information is inserted into a FIFO buffer at a rate of m bytes per second.
The information is deleted at a rate of n byte per second. The maximum
capacity of the buffer is k bytes.
a. How long does it take for an empty buffer to fill up when m > n?
b. How long does it take for a full buffer to empty when m < n?
c. Is the FIFO buffer needed if m � n?

442 CHAPTER ELEVEN Input–Output Organization

Chapter11.qxd 2/2/2007 6:40 PM Page 442

EON
PreMedia

CONFIRMING PGS

11-14. The bits in the control register of the FIFO shown in Fig. 11-9 are
F1F2F3F4 � 0011. Give the sequence of internal operations when an item is
deleted from the FIFO and then a new item is inserted.

11-15. What are the values of input ready and output ready and control bits F1
through F4 in Fig. 11-9 when:
a. The buffer is empty?
b. The buffer is full?
c. The buffer contains two data items?

11-16. Show a block diagram similar to Fig. 11-10 for the data transfer from a CPU
to an interface and then to an I/O device. Determine a procedure for set-
ting and clearing the flag bit.

11-17. Using the configuration established in Prob. 11-16, obtain a flowchart (simi-
lar to Fig. 11-11) for the CPU program to output data.

11-18. What is the basic advantage of using interrupt-initiated data transfer over
transfer under program control without an interrupt?

11-19. In most computers an interrupt is recognized only after the execution of the
instruction. Consider the possibility of acknowledging the interrupt at any time
during the execution of the instruction. Discuss the difficulty that may arise.

11-20. What happens in the daisy-chain priority interrupt shown in Fig. 11-12 when
device 1 requests an interrupt after device 2 has sent an interrupt request to
the CPU but before the CPU responds with the interrupt acknowledge?

11-21. Consider a computer without priority interrupt hardware. Any one of many
sources can interrupt the computer and any interrupt request results in stor-
ing the return address and branching to a common interrupt routine.
Explain how a priority can be established in the interrupt service program.

11-22. Using combinational circuit design techniques, derive the Boolean expres-
sions listed in Table 11-2 for the priority encoder. Draw the logic diagram of
the circuit.

11-23. Design a parallel priority interrupt hardware for a system with eight inter-
rupt sources.

11-24. Obtain the truth table of an 8 � 3 priority encoder. Assume that the three
outputs xyz from the priority encoder are used to provide a vector address
of the form 101xyz00. List the eight vector addresses starting from the one
with the highest priority.

11-25. What should be done in Fig. 11-14 to make the four VAD values equal to
the binary equivalent of 76, 77, 78, and 79?

11-26. What programming steps are required to check when a source interrupts the
computer while it is still being serviced by a previous interrupt request from
the same source?

11-27. Why are the read and write control lines in a DMA controller bidirectional?
Under what condition and for what purpose are they used as inputs? Under
what condition and for what purpose are they used as outputs?

11-28. It is necessary to transfer 256 words from a magnetic disk to a memory
section starting from address 1230. The transfer is by means of DMA as
shown in Fig. 11-18.

SECTION 11-8 Serial Communication 443

Chapter11.qxd 2/2/2007 6:40 PM Page 443

EON
PreMedia

CONFIRMING PGS

a. Give the initial values that the CPU must transfer to the DMA controller.
b. Give the step-by-step account of the actions taken during the input of the

first two words.
11-29. A DMA controller transfers 16-bit words to memory using cycle stealing.

The words are assembled from a device that transmits characters at a rate of
2400 characters per second. The CPU is fetching and executing instructions
at an average rate of 1 million instructions per second. By how much will
the CPU be slowed down because of the DMA transfer?

11-30. Why does DMA have priority over the CPU when both request a memory
transfer?

11-31. Draw a flowchart similar to the one in Fig. 11-20 that describes the
CPU–I/O channel communication in the IBM 370.

11-32. The address of a terminal connected to a data communication processor
consists of two letters of the alphabet or a letter followed by one of the 10
numerals. How many different addresses can be formulated.

11-33. List a possible line procedure and the character sequence for the communi-
cation between a data communication processor and a remote terminal. The
processor inquires if the terminal is operative. The terminal responds with
yes or no. If the response is yes, the processor sends a block of text.

11-34. A data communication link employs the character-controlled protocol with
data transparency using the DLE character. The text message that the trans-
mitter sends between STX and ETX is as follows:

DLE STX DLE DLE ETX DLE DLE ETX DLE ETX

What is the binary value of the transparent text data?
11-35. What is the minimum number of bits that a frame must have in the bit-

oriented protocol?
11-36. Show how the zero insertion works in the bit-oriented protocol when a zero

followed by the 10 bits that represent the binary equivalent of 1023 are
transmitted.

444 CHAPTER ELEVEN Input–Output Organization

REFERENCES

1. Gorsline, G. W., Computer Organization: Hardware/Software, 2nd ed. Englewood
Cliffs, NJ: Prentice Hall, 1986.

2. Hays, J. F., Computer Architecture and Organization, 2nd ed. New York: McGraw-Hill,
1988.

3. Hill, F. J., and G. R. Peterson, Digital Systems: Hardware Organization and Design,
3rd ed. New York: John Wiley, 1987.

4. Hwang, K., and F. A. Briggs, Computer Architecture and Parallel Processing. New York:
McGraw-Hill, 1984.

Chapter11.qxd 2/2/2007 6:40 PM Page 444

EON
PreMedia

CONFIRMING PGS

5. Lippiatt, A. G., and G. L. Wright, The Architecture of Small Computer Systems, 2nd ed.
Englewood Cliffs, NJ: Prentice Hall, 1985.

6. Patterson, D. A., and J. L. Hennessy, Computer Architecture: A Quantitative Approach.
San Mateo, CA: Morgan Kaufmann Publishers, 1990.

7. Pollard, L. H., Computer Design and Architecture. Englewood Cliffs, NJ: Prentice
Hall, 1990.

8. Rafiquzzaman, M., and R. Chandra, Modern Computer Architecture. St. Paul, MN:
West Publishing, 1988.

9. Toy, W., and B. Zee, Computer Hardware/Software Architecture. Englewood Cliffs,
NJ: Prentice Hall, 1986.

10. Wakerly, J. F., Microcomputer Architecture and Programming. New York: John Wiley,
1981.

11. Ward, S. A., and R. H. Halstead, Jr., Computation Structures. Cambridge, MA: MIT
Press, 1990.

SECTION 11-8 Serial Communication 445

Chapter11.qxd 2/2/2007 6:40 PM Page 445

EON
PreMedia

CONFIRMING PGS

Chapter11.qxd 2/2/2007 6:40 PM Page 446

This page is intentionally left blank.

EON
PreMedia

CONFIRMING PGS

IN THIS CHAPTER

12-1 Memory Hierarchy
12-2 Main Memory
12-3 Auxiliary Memory
12-4 Associative Memory
12-5 Cache Memory
12-6 Virtual Memory
12-7 Memory Management Hardware

12-1 Memory Hierarchy
The memory unit is an essential component in any digital computer since it is
needed for storing programs and data. A very small computer with a limited
application may be able to fulfill its intended task without the need of addi-
tional storage capacity. Most general-purpose computers would run more effi-
ciently if they were equipped with additional storage beyond the capacity of
the main memory. There is just not enough space in one memory unit to
accommodate all the programs used in a typical computer. Moreover, most
computer users accumulate and continue to accumulate large amounts of data-
processing software. Not all accumulated information is needed by the proces-
sor at the same time. Therefore, it is more economical to use low-cost storage
devices to serve as a backup for storing the information that is not currently
used by the CPU. The memory unit that communicates directly with the CPU
is called the main memory. Devices that provide backup storage are called
auxiliary memory. The most common auxiliary memory devices used in com-
puter systems are magnetic disks and tapes. They are used for storing system
programs, large data files, and other backup information. Only programs and
data currently needed by the processor reside in main memory. All other

447

C H A P T E R T W E L V E

Memory Organization

auxiliary memory

Chapter12.qxd 2/2/2007 6:45 PM Page 447

EON
PreMedia

CONFIRMING PGS

informatior is stored in auxiliary memory and transferred to main memory
when needed.

The total memory capacity of a computer can be visualized as being a
hierarchy of components. The memory hierarchy system consists of all storage
devices employed in a computer system from the slow but high-capacity aux-
iliary memory to a relatively faster main memory, to an even smaller and faster
cache memory accessible to the high-speed processing logic. Figure 12-1 illus-
trates the components in a typical memory hierarchy. At the bottom of the
hierarchy are the relatively slow magnetic tapes used to store removable files.
Next are the magnetic disks used as backup storage. The main memory occu-
pies a central position by being able to communicate directly with the CPU
and with auxiliary memory devices through an I/O processor. When pro-
grams not residing in main memory are needed by the CPU, they are brought
in from auxiliary memory. Programs not currently needed in main memory
are transferred into auxiliary memory to provide space for currently used pro-
grams and data.

A special very-high-speed memory called a cache is sometimes used to
increase the speed of processing by making current programs and data avail-
able to the CPU at a rapid rate. The cache memory is employed in computer
systems to compensate for the speed differential between main memory access
time and processor logic. CPU logic is usually faster than main memory access
time, with the result that processing speed is limited primarily by the speed of
main memory. A technique used to compensate for the mismatch in operating
speeds is to employ an extremely fast, small cache between the CPU and main
memory whose access time is close to processor logic clock cycle time. The
cache is used for storing segments of programs currently being executed in the
CPU and temporary data frequently needed in the present calculations. By

448 CHAPTER TWELVE Memory Organization

cache memory

Auxiliary memory

Magnetic
disks

Magnetic
tapes

I/O processor Main
memory

Cache
memoryCPU

Figure 12-1 Memory hierarchy in a computer system.

Chapter12.qxd 2/2/2007 6:45 PM Page 448

EON
PreMedia

CONFIRMING PGS

making programs and data available at a rapid rate, it is possible to increase
the performance rate of the computer.

While the I/O processor manages data transfers between auxiliary mem-
ory and main memory, the cache organization is concerned with the transfer
of information between main memory and CPU. Thus each is involved with
a different level in the memory hierarchy system. The reason for having two
or three levels of memory hierarchy is economics. As the storage capacity of
the memory increases, the cost per bit for storing binary information decreases
and the access time of the memory becomes longer. The auxiliary memory
has a large storage capacity, is relatively inexpensive, but has low access speed
compared to main memory. The cache memory is very small, relatively expen-
sive, and has very high access speed. Thus as the memory access speed
increases, so does its relative cost. The overall goal of using a memory hierar-
chy is to obtain the highest-possible average access speed while minimizing the
total cost of the entire memory system.

Auxiliary and cache memories are used for different purposes. The cache
holds those parts of the program and data that are most heavily used, while
the auxiliary memory holds those parts that are not presently used by the
CPU. Moreover, the CPU has direct access to both cache and main memory
but not to auxiliary memory. The transfer from auxiliary to main memory is
usually done by means of direct memory access of large blocks of data. The
typical access time ratio between cache and main memory is about 1 to 7. For
example, a typical cache memory may have an access time of 100 ns, while
main memory access time may be 700 ns. Auxiliary memory average access
time is usually 1000 times that of main memory. Block size in auxiliary mem-
ory typically ranges from 256 to 2048 words, while cache block size is typi-
cally from 1 to 16 words.

Many operating systems are designed to enable the CPU to process a
number of independent programs concurrently. This concept, called multipro-
gramming, refers to the existence of two or more programs in different parts of
the memory hierarchy at the same time. In this way it is possible to keep all
parts of the computer busy by working with several programs in sequence. For
example, suppose that a program is being executed in the CPU and an I/O
transfer is required. The CPU initiates the I/O processor to start executing the
transfer. This leaves the CPU free to execute another program. In a multipro-
gramming system, when one program is waiting for input or output transfer,
there is another program ready to utilize the CPU.

With multiprogramming the need arises for running partial programs, for
varying the amount of main memory in use by a given program, and for moving
programs around the memory hierarchy. Computer programs are sometimes too
long to be accommodated in the total space available in main memory.
Moreover, a computer system uses many programs and all the programs cannot
reside in main memory at all times. A program with its data normally resides in
auxiliary memory. When the program or a segment of the program is to be

SECTION 12-1 Memory Hierarchy 449

multiprogramming

Chapter12.qxd 2/2/2007 6:45 PM Page 449

EON
PreMedia

CONFIRMING PGS

executed, it is transferred to main memory to be executed by the CPU. Thus one
may think of auxiliary memory as containing the totality of information stored in
a computer system. It is the task of the operating system to maintain in main
memory a portion of this information that is currently active. The part of the
computer system that supervises the flow of information between auxiliary mem-
ory and main memory is called the memory management system. The hardware for
a memory management system is presented in Sec. 12-7.

12-2 Main Memory
The main memory is the central storage unit in a computer system. It is a rel-
atively large and fast memory used to store programs and data during the
computer operation. The principal technology used for the main memory is
based on semiconductor integrated circuits. Integrated circuit RAM chips are
available in two possible operating modes, static and dynamic. The static RAM
consists essentially of internal flip-flops that store the binary information. The
stored information remains valid as long as power is applied to the unit. The
dynamic RAM stores the binary information in the form of electric charges
that are applied to capacitors. The capacitors are provided inside the chip by
MOS transistors. The stored charge on the capacitors tend to discharge with
time and the capacitors must be periodically recharged by refreshing the
dynamic memory. Refreshing is done by cycling through the words every few
milliseconds to restore the decaying charge. The dynamic RAM offers
reduced power consumption and larger storage capacity in a single memory
chip. The static RAM is easier to use and has shorter read and write cycles.
One of the major applications of the static RAM is in implementing the cache
memories. The dynamic RAMs are used for implementing the main memory.
Most of the desktop personnel computer systems are dynamic RAMs with
improved performance characteristics such as multibank DRAM, extended
dataout DRAM, synchronous DRAM, and Direct RAM bus DRAM.

Most of the main memory in a general-purpose computer is made up of
RAM integrated circuit chips, but a portion of the memory may be con-
structed with ROM chips. Originally, RAM was used to refer to a random-
access memory, but now it is used to designate a read/write memory to
distinguish it from a read-only memory, although ROM is also random access.
RAM is used for storing the bulk of the programs and data that are subject to
change. ROM is used for storing programs that are permanently resident in
the computer and for tables of constants that do not change in value once the
production of the computer is completed.

Among other things, the ROM portion of main memory is needed for
storing an initial program called a bootstrap loader. The bootstrap loader is
a program whose function is to start the computer software operating when
power is turned on. Since RAM is volatile, its contents are destroyed when
power is turned off. The contents of ROM remain unchanged after power is

450 CHAPTER TWELVE Memory Organization

Random-access
memory (RAM)

read-only memory
(ROM)

bootstrap loader

Chapter12.qxd 2/2/2007 6:45 PM Page 450

EON
PreMedia

CONFIRMING PGS

turned off and on again. The startup of a computer consists of turning the
power on and starting the execution of an initial program. Thus when power
is turned on, the hardware of the computer sets the program counter to the
first address of the bootstrap loader. The bootstrap program loads a portion of
the operating system from disk to main memory and control is then trans-
ferred to the operating system, which prepares the computer for general use.

RAM and ROM chips are available in a variety of sizes. If the memory
needed for the computer is larger than the capacity of one chip, it is necessary
to combine a number of chips to form the required memory size. To demon-
strate the chip interconnection, we will show an example of a 1024 � 8 mem-
ory constructed with 128 � 8 RAM chips and 512 � 8 ROM chips.

RAM and ROM Chips
A RAM chip is better suited for communication with the CPU if it has one or
more control inputs that select the chip only when needed. Another common
feature is a bidirectional data bus that allows the transfer of data either from
memory to CPU during a read operation, or from CPU to memory during a
write operation. A bidirectional bus can be constructed with three-state buffers.
A three-state buffer output can be placed in one of three possible states: a signal
equivalent to logic 1, a signal equivalent to logic 0, or a high-impedance state.
The logic 1 and 0 are normal digital signals. The high-impedance state behaves
like an open circuit, which means that the output does not carry a signal and has
no logic significance.

SECTION 12-2 Main Memory 451

bidirectional bus

128 � 8
RAM

CS1

CS2

RD

WR

AD7

Chip select 1

Chip select 2

Read

Write

7-bit address

8-bit data bus

CS1
0
0
1
1
1
1

0
1
0
0
0
1

�
�
0
0
1
�

�
�
0
1
�
�

CS2 RD WR Memory function State of data bus
High-impedance
High-impedance
High-impedance
Input data to RAM
Output data from RAM
High-impedance

(b) Function table

Inhibit
Inhibit
Inhibit

Inhibit

Write
Read

(a) Block diagram

Figure 12-2 Typical RAM chip.

computer startup

Chapter12.qxd 2/2/2007 6:45 PM Page 451

EON
PreMedia

CONFIRMING PGS

The block diagram of a RAM chip is shown in Fig. 12-2. The capacity of
the memory is 128 words of eight bits (one byte) per word. This requires a 7-bit
address and an 8-bit bidirectional data bus. The read and write inputs specify
the memory operation and the two chips select (CS) control inputs are for
enabling the chip only when it is selected by the microprocessor. The avail-
ability of more than one control input to select the chip facilitates the decod-
ing of the address lines when multiple chips are used in the microcomputer.
The read and write inputs are sometimes combined into one line labeled R/W.
When the chip is selected, the two binary states in this line specify the two
operations of read or write.

The function table listed in Fig. 12-2(b) specifies the operation of the
RAM chip. The unit is in operation only when CS1 � 1 and CS2 � 0. The bar
on top of the second select variable indicates that this input is enabled when
it is equal to 0. If the chip select inputs are not enabled, or if they are enabled
but the read or write inputs are not enabled, the memory is inhibited and its
data bus is in a high-impedance state. When CS1 � 1 and CS2 � 0, the mem-
ory can be placed in a write or read mode. When the WR input is enabled,
the memory stores a byte from the data bus into a location specified by the
address input lines. When the RD input is enabled, the content of the selected
byte is placed into the data bus. The RD and WR signals control the memory
operation as well as the bus buffers associated with the bidirectional data bus.

A ROM chip is organized externally in a similar manner. However, since
a ROM can only read, the data bus can only be in an output mode. The block
diagram of a ROM chip is shown in Fig. 12-3. For the same-size chip, it is pos-
sible to have more bits of ROM than of RAM, because the internal binary
cells in ROM occupy less space than in RAM. For this reason, the diagram
specifies a 512-byte ROM, while the RAM has only 128 bytes.

The nine address lines in the ROM chip specify any one of the 512 bytes
stored in it. The two chip select inputs must be CS1 � 1 and CS2 � 0 for the
unit to operate. Otherwise, the data bus is in a high-impedance state. There is
no need for a read or write control because the unit can only read. Thus when
the chip is enabled by the two select inputs, the byte selected by the address
lines appears on the data bus.

Memory Address Map
The designer of a computer system must calculate the amount of memory
required for the particular application and assign it to either RAM or ROM.
The interconnection between memory and processor is then established from
knowledge of the size of memory needed and the type of RAM and ROM
chips available. The addressing of memory can be established by means of a
table that specifies the memory address assigned to each chip. The table,
called a memory address map, is a pictorial representation of assigned address
space for each chip in the system.

To demonstrate with a particular example, assume that a computer sys-
tem needs 512 bytes of RAM and 512 bytes of ROM. The RAM and ROM

452 CHAPTER TWELVE Memory Organization

Chapter12.qxd 2/2/2007 6:45 PM Page 452

EON
PreMedia

CONFIRMING PGS

chips to be used are specified in Figs. 12-2 and 12-3. The memory address map
for this configuration is shown in Table 12-1. The component column specifies
whether a RAM or a ROM chip is used. The hexadecimal address column
assigns a range of hexadecimal equivalent addresses for each chip. The
address bus lines are listed in the third column. Although there are 16 lines in
the address bus, the table shows only 10 lines because the other 6 are not used
in this example and are assumed to be zero. The small x’s under the address
bus lines designate those lines that must be connected to the address inputs in
each chip. The RAM chips have 128 bytes and need seven address lines. The
ROM chip has 512 bytes and needs 9 address lines. The x’s are always
assigned to the low-order bus lines: lines 1 through 7 for the RAM and lines
1 through 9 for the ROM. It is now necessary to distinguish between four
RAM chips by assigning to each a different address. For this particular example
we choose bus lines 8 and 9 to represent four distinct binary combinations.
Note that any other pair of unused bus lines can be chosen for this purpose.
The table clearly shows that the nine low-order bus lines constitute a memory
space for RAM equal to 29 � 512 bytes. The distinction between a RAM and
ROM address is done with another bus line. Here we choose line 10 for this
purpose. When line 10 is 0, the CPU selects a RAM, and when this line is
equal to 1, it selects the ROM.

The equivalent hexadecimal address for each chip is obtained from the
information under the address bus assignment. The address bus lines are

SECTION 12-2 Main Memory 453

Chip select 1 CS1

512 � 8
ROM

8-bit data bus

CS2

AD9

Chip select 2

9-bit address

Figure 12-3 Typical ROM chip.

TABLE 12-1 Memory Address Map for Microprocomputer

Address bus
Hexadecimal

Component address 10 9 8 7 6 5 4 3 2 1

RAM 1 0000—007F 0 0 0 x x x x x x x
RAM 2 0080—00FF 0 0 1 x x x x x x x
RAM 3 0100—017F 0 1 0 x x x x x x x
RAM 4 0180—01FF 0 1 1 x x x x x x x
ROM 0200—03FF 1 x x x x x x x x x

Chapter12.qxd 2/2/2007 6:45 PM Page 453

EON
PreMedia

CONFIRMING PGS

subdivided into groups of four bits each so that each group can be represented
with a hexadecimal digit. The first hexadecimal digit represents lines 13 to 16
and is always 0. The next hexadecimal digit represents lines 9 to 12, but lines
11 and 12 are always 0. The range of hexadecimal addresses for each compo-
nent is determined from the x’s associated with it. These x’s represent a binary
number that can range from an all-0’s to an all-1’s value.

Memory Connection to CPU
RAM and ROM chips are connected to a CPU through the data and address
buses. The low-order lines in the address bus select the byte within the chips
and other lines in the address bus select a particular chip through its chip select
inputs. The connection of memory chips to the CPU is shown in Fig. 12-4. This
configuration gives a memory capacity of 512 bytes of RAM and 512 bytes of
ROM. It implements the memory map of Table 12-1. Each RAM receives the
seven low-order bits of the address bus to select one of 128 possible bytes. The
particular RAM chip selected is determined from lines 8 and 9 in the address
bus. This is done through a 2 � 4 decoder whose outputs go to the CS1 inputs
in each RAM chip. Thus, when address lines 8 and 9 are equal to 00, the first
RAM chip is selected. When 01, the second RAM chip is selected, and so on.
The RD and WR outputs from the microprocessor are applied to the inputs of
each RAM chip.

The selection between RAM and ROM is achieved through bus line 10.
The RAMs are selected when the bit in this line is 0, and the ROM when the
bit is 1. The other chip select input in the ROM is connected to the RD con-
trol line for the ROM chip to be enabled only during a read operation.
Address bus lines 1 to 9 are applied to the input address of ROM without
going through the decoder. This assigns addresses 0 to 511 to RAM and 512 to
1023 to ROM. The data bus of the ROM has only an output capability,
whereas the data bus connected to the RAMs can transfer information in both
directions.

The example just shown gives an indication of the interconnection com-
plexity that can exist between memory chips and the CPU. The more chips that
are connected, the more external decoders are required for selection among the
chips. The designer must establish a memory map that assigns addresses to the
various chips from which the required connections are determined.

12-3 Auxiliary Memory
The most common auxiliary memory devices used in computer systems are
magnetic disks and tapes. Other components used, but not as frequently, are
magnetic drums, magnetic bubble memory, and optical disks. To understand
fully the physical mechanism of auxiliary memory devices one must have a
knowledge of magnetics, electronics, and electromechanical systems.

454 CHAPTER TWELVE Memory Organization

Chapter12.qxd 2/2/2007 6:45 PM Page 454

EON
PreMedia

CONFIRMING PGS

CS2

CPU

16–11 7–110 9 8 RD WR Data bus

Address bus

Decoder
3 2 1 0

CS1

128 � 8
RAM 1

Data
CS2
RD
WR
AD7

CS1

128 � 8
RAM 2 Data

CS2
RD
WR
AD7

CS1

128 � 8
RAM 3

Data
CS2
RD
WR
AD7

CS1

128 � 8
RAM 4

Data
CS2
RD
WR
AD7

CS1

1–7
8
9

128 � 8
ROM

Data
AD9

Figure 12-4 Memory connection to the CPU.

455

Chapter12.qxd 2/2/2007 6:45 PM Page 455

EON
PreMedia

CONFIRMING PGS

Although the physical properties of these storage devices can be quite com-
plex, their logical properties can be characterized and compared by a few
parameters. The important characteristics of any device are its access mode,
access time, transfer rate, capacity, and cost.

The average time required to reach a storage location in memory and
obtain its contents is called the access time. In electromechanical devices with
moving parts such as disks and tapes, the access time consists of a seek time
required to position the read-write head to a location and a transfer time
required to transfer data to or from the device. Because the seek time is usu-
ally much longer than the transfer time, auxiliary storage is organized in
records or blocks. A record is a specified number of characters or words.
Reading or writing is always done on entire records. The transfer rate is the
number of characters or words that the device can transfer per second, after it
has been positioned at the beginning of the record.

Magnetic drums and disks are quite similar in operation. Both consist of
high-speed rotating surfaces coated with a magnetic recording medium. The
rotating surface of the drum is a cylinder and that of the disk, a round flat plate.
The recording surface rotates at uniform speed and is not started or stopped
during access operations. Bits are recorded as magnetic spots on the surface as
it passes a stationary mechanism called a write head. Stored bits are detected by
a change in magnetic field produced by a recorded spot on the surface as it
passes through a read head. The amount of surface available for recording in a
disk is greater than in a drum of equal physical size. Therefore, more informa-
tion can be stored on a disk than on a drum of comparable size. For this rea-
son, disks have replaced drums in more recent computers.

Magnetic Disks
A magnetic disk is a circular plate constructed of metal or plastic coated with
magnetized material. Often both sides of the disk are used and several disks
may be stacked on one spindle with read/write heads available on each sur-
face. All disks rotate together at high speed and are not stopped or started for
access purposes. Bits are stored in the magnetized surface in spots along con-
centric circles called tracks. The tracks are commonly divided into sections
called sectors. In most systems, the minimum quantity of information which
can be transferred is a sector. The subdivision of one disk surface into tracks
and sectors is shown in Fig. 12-5.

Some units use a single read/write head for each disk surface. In this type
of unit, the track address bits are used by a mechanical assembly to move the
head into the specified track position before reading or writing. In other disk
systems, separate read/write heads are provided for each track in each surface.
The address bits can then select a particular track electronically through a
decoder circuit. This type of unit is more expensive and is found only in very
large computer systems.

Permanent timing tracks are used in disks to synchronize the bits and rec-
ognize the sectors. A disk system is addressed by address bits that specify the

456 CHAPTER TWELVE Memory Organization

Chapter12.qxd 2/2/2007 6:45 PM Page 456

EON
PreMedia

CONFIRMING PGS

disk number, the disk surface, the sector number and the track within the sec-
tor. After the read/write heads are positioned in the specified track, the system
has to wait until the rotating disk reaches the specified sector under the
read/write head. Information transfer is very fast once the beginning of a sec-
tor has been reached. Disks may have multiple heads and simultaneous trans-
fer of bits from several tracks at the same time.

A track in a given sector near the circumference is longer than a track
near the center of the disk. If bits are recorded with equal density, some tracks
will contain more recorded bits than others. To make all the records in a sec-
tor of equal length, some disks use a variable recording density with higher
density on tracks near the center than on tracks near the circumference. This
equalizes the number of bits on all tracks of a given sector.

Disks that are permanently attached to the unit assembly and cannot be
removed by the occasional user are called hard disks. A disk drive with remov-
able disks is called a floppy disk. The disks used with a floppy disk drive are
small removable disks made of plastic coated with magnetic recording mate-
rial. There are two sizes commonly used, with diameters of 5.25 and
3.5 inches. The 3.5-inch disks are smaller and can store more data than can the
5.25-inch disks. Floppy disks are extensively used in personal computers as a
medium for distributing software to computer users.

Magnetic Tape
A magnetic tape transport consists of the electrical, mechanical, and electronic
components to provide the parts and control mechanism for a magnetic-tape
unit. The tape itself is a strip of plastic coated with a magnetic recording

SECTION 12-3 Auxiliary Memory 457

Tracks

Read/write
head

Se
ct

or

Figure 12-5 Magnetic disk.

Chapter12.qxd 2/2/2007 6:45 PM Page 457

EON
PreMedia

CONFIRMING PGS

medium. Bits are recorded as magnetic spots on the tape along several tracks.
Usually, seven or nine bits are recorded simultaneously to form a character
together with a parity bit. Read/write heads are mounted one in each track so
that data can be recorded and read as a sequence of characters.

Magnetic tape units can be stopped, started to move forward or in
reverse, or can be rewound. However, they cannot be started or stopped fast
enough between individual characters. For this reason, information is recorded
in blocks referred to as records. Gaps of unrecorded tape are inserted between
records where the tape can be stopped. The tape starts moving while in a gap
and attains its constant speed by the time it reaches the next record. Each
record on tape has an identification bit pattern at the beginning and end. By
reading the bit pattern at the beginning, the tape control identifies the record
number. By reading the bit pattern at the end of the record, the control recog-
nizes the beginning of a gap. A tape unit is addressed by specifying the record
number and the number of characters in the record. Records may be of fixed
or variable length.

12-4 Associative Memory
Many data-processing applications require the search of items in a table stored
in memory. An assembler program searches the symbol address table in order
to extract the symbo1’s binary equivalent. An account number may be
searched in a file to determine the holder’s name and account status. The estab-
lished way to search a table is to store all items where they can be addressed in
sequence. The search procedure is a strategy for choosing a sequence of
addresses, reading the content of memory at each address, and comparing the
information read with the item being searched until a match occurs. The num-
ber of accesses to memory depends on the location of the item and the effi-
ciency of the search algorithm. Many search algorithms have been developed
to minimize the number of accesses while searching for an item in a random or
sequential access memory.

The time required to find an item stored in memory can be reduced con-
siderably if stored data can be identified for access by the content of the data
itself rather than by an address. A memory unit accessed by content is called
an associative memory or content addressable memory (CAM). This type of memory
is accessed simultaneously and in parallel on the basis of data content rather
than by specific address or location. When a word is written in an associative
memory, no address is given. The memory is capable of finding an empty
unused location to store the word. When a word is to be read from an asso-
ciative memory, the content of the word, or part of the word, is specified. The
memory locates all words which match the specified content and marks them
for reading.

Because of its organization, the associative memory is uniquely suited to
do parallel searches by data association. Moreover, searches can be done on

458 CHAPTER TWELVE Memory Organization

content address-
able memory

Chapter12.qxd 2/2/2007 6:45 PM Page 458

EON
PreMedia

CONFIRMING PGS

an entire word or on a specific field within a word. An associative memory is
more expensive than a random access memory because each cell must have
storage capability as well as logic circuits for matching its content with an
external argument. For this reason, associative memories are used in applica-
tions where the search time is very critical and must be very short.

Hardware Organization
The block diagram of an associative memory is shown in Fig. 12-6. It consists
of a memory array and logic for m words with n bits per word. The argument
register A and key register K each have n bits, one for each bit of a word. The
match register M has m bits, one for each memory word. Each word in mem-
ory is compared in parallel with the content of the argument register. The
words that match the bits of the argument register set a corresponding bit in
the match register. After the matching process, those bits in the match register
that have been set indicate the fact that their corresponding words have been
matched. Reading is accomplished by a sequential access to memory for those
words whose corresponding bits in the match register have been set.

The key register provides a mask for choosing a particular field or key in
the argument word. The entire argument is compared with each memory
word if the key register contains all 1’s. Otherwise, only those bits in the argu-
ment that have 1’s in their corresponding position of the key register are com-
pared. Thus the key provides a mask or identifying piece of information which

SECTION 12-4 Associative Memory 459

Argument register (A)

Key register (K)

Match
register

M

Associative memory
array and logic

m words
n bits per word

Output

Iutput

Read

Write

Figure 12-6 Block diagram of associative memory.

Chapter12.qxd 2/2/2007 6:45 PM Page 459

EON
PreMedia

CONFIRMING PGS

specifies how the reference to memory is made. To illustrate with a numerical
example, suppose that the argument register A and the key register K have the
bit configuration shown below. Only the three leftmost bits of A are compared
with memory words because K has 1’s in these positions.

A 101 111100

K 111 000000

Word 1 100 111100 no match

Word 2 101 000001 match

Word 2 matches the unmasked argument field because the three leftmost bits
of the argument and the word are equal.

The relation between the memory array and external registers in an asso-
ciative memory is shown in Fig. 12-7. The cells in the array are marked by
the letter C with two subcripts. The first subscript gives the word number and
the second specifies the bit position in the word. Thus cell Cij is the cell for bit
j in word i. A bit Aj in the argument register is compared with all the bits in
column j of the array provided that Kj � 1. This is done for all columns
j � 1, 2, . . . , n. If a match occurs between all the unmasked bits of the argu-
ment and the bits in word i, the corresponding bit Mi in the match register is
set to 1. If one or more unmasked bits of the argument and the word do not
match, Mi is cleared to 0.

460 CHAPTER TWELVE Memory Organization

A1 Aj An

Kn

C1n M1

Mi

Mm

Cin

Cmn

Kj

C1j

Cij

Cmj

K1

C11

Cm1

Ci l

Bit 1 Bit j Bit n

Word 1

Word i

Word m

Figure 12-7 Associative memory of m word, n cells per word.

Chapter12.qxd 2/2/2007 6:45 PM Page 460

EON
PreMedia

CONFIRMING PGS

The internal organization of a typical cell Cij is shown in Fig. 12-8. It
consists of a flip-flop storage element Fij and the circuits for reading, writing,
and matching the cell. The input bit is transferred into the storage cell during
a write operation. The bit stored is read out during a read operation. The
match logic compares the content of the storage cell with the corresponding
unmasked bit of the argument and provides an output for the decision logic
that sets the bit in Mi.

Match Logic
The match logic for each word can be derived from the comparison algorithm
for two binary numbers. First, we neglect the key bits and compare the argu-
ment in A with the bits stored in the cells of the words. Word i is equal to the
argument in A if Aj � Fij for j � 1, 2, . . . ,n. Two bits are equal if they are both
1 or both 0. The equality of two bits can be expressed logically by the Boolean
function

xj � Aj Fij � Aj�Fij�

where xj � 1 if the pair of bits in position j are equal; otherwise, xj � 0.
For a word i to be equal to the argument in A we must have all xj vari-

ables equal to 1. This is the condition for setting the corresponding match bit
Mi to 1. The Boolean function for this condition is

Mi � x1 x2 x3 . . . xn

and constitutes the AND operation of all pairs of matched bits in a word.

SECTION 12-4 Associative Memory 461

Input

Write

R S

Output

To MiRead
Match
logic

Fij

Aj Kj

Figure 12-8 One cell of associative memory.

Chapter12.qxd 2/2/2007 6:45 PM Page 461

EON
PreMedia

CONFIRMING PGS

We now include the key bit Kj in the comparison logic. The requirement
is that if Kj � 0, the corresponding bits of Aj and Fij need no comparison. Only
when Kj � 1 must they be compared. This requirement is achieved by ORing
each term with Kj�, thus:

xj � Kj� � � xj if Kj � 1
1 if Kj � 0

When Kj � 1, we have Kj
�� 0 and xj � 0 � xj. When Kj � 0, then Kj

� � 1 and
xj � 1 � 1. A term (xj � Kj

�) will be in the 1 state if its pair of bits is not com-
pared. This is necessary because each term is ANDed with all other terms so
that an output of 1 will have no effect. The comparison of the bits has an effect
only when Kj � 1.

The match logic for word i in an associative memory can now be
expressed by the following Boolean function:

Mi � (x1 � K1
�)(x2 � K2

�)(x3 � K3
�) . . . (xn � Kn

�)

Each term in the expression will be equal to 1 if its corresponding Kj � 0. If
Kj � 1, the term will be either 0 or 1 depending on the value of xj. A match
will occur and Mi will be equal to 1 if all terms are equal to 1.

If we substitute the original definition of xj, the Boolean function above
can be expressed as follows:

Mi � �
n

j � 1
(Aj Fij � Aj� Fij� � Kj�)

where � is a product symbol designating the AND operation of all n terms.
We need m such functions, one for each word i � 1, 2, 3, . . . , m.

The circuit for matching one word is shown in Fig. 12-9. Each cell
requires two AND gates and one OR gate. The inverters for Aj and Kj are
needed once for each column and are used for all bits in the column. The out-
put of all OR gates in the cells of the same word go to the input of a common
AND gate to generate the match signal for Mi. Mi will be logic 1 if a match
occurs and 0 if no match occurs. Note that if the key register contains all 0’s,
output Mi will be a 1 irrespective of the value of A or the word. This occur-
rence must be avoided during normal operation.

Read Operation
If more than one word in memory matches the unmasked argument field, all
the matched words will have 1’s in the corresponding bit position of the match
register. It is then necessary to scan the bits of the match register one at a time.
The matched words are read in sequence by applying a read signal to each
word line whose corresponding Mi bit is a 1.

462 CHAPTER TWELVE Memory Organization

Chapter12.qxd 2/2/2007 6:45 PM Page 462

EON
PreMedia

CONFIRMING PGS

In most applications, the associative memory stores a table with no two
identical items under a given key. In this case, only one word may match the
unmasked argument field. By connecting output Mi directly to the read line in
the same word position (instead of the M register), the content of the matched
word will be presented automatically at the output lines and no special read
command signal is needed. Furthermore, if we exclude words having a zero
content, an all-zero output will indicate that no match occurred and that the
searched item is not available in memory.

Write Operation
An associative memory must have a write capability for storing the informa-
tion to be searched. Writing in an associative memory can take different forms,
depending on the application. If the entire memory is loaded with new infor-
mation at once prior to a search operation then the writing can be done by
addressing each location in sequence. This will make the device a random-
access memory for writing and a content addressable memory for reading.
The advantage here is that the address for input can be decoded as in a
random-access memory. Thus instead of having m address lines, one for each
word in memory, the number of address lines can be reduced by the decoder
to d lines, where m � 2d.

SECTION 12-4 Associative Memory 463

K1

Mi

Fi1 Fi1

A l K2

‘ ‘Fi2 Fi2 ‘Fin Fin

A 2 Kn An

Figure 12-9 Match logic for one word of associative memory.

Chapter12.qxd 2/2/2007 6:45 PM Page 463

EON
PreMedia

CONFIRMING PGS

If unwanted words have to be deleted and new words inserted one at a
time, there is a need for a special register to distinguish between active and
inactive words. This register, sometimes called a tag register, would have as
many bits as there are words in the memory. For every active word stored in
memory, the corresponding bit in the tag register is set to 1. A word is deleted
from memory by clearing its tag bit to 0. Words are stored in memory by
scanning the tag register until the first 0 bit is encountered. This gives the first
available inactive word and a position for writing a new word. After the new
word is stored in memory it is made active by setting its tag bit to 1. An
unwanted word when deleted from memory can be cleared to all 0’s if this
value is used to specify an empty location. Moreover, the words that have a
tag bit of 0 must be masked (together with the Kj bits) with the argument word
so that only active words are compared.

12-5 Cache Memory
Analysis of a large number of typical programs has shown that the refer-
ences to memory at any given interval of time tend to be confined within a
few localized areas in memory. This phenomenon is known as the property of
locality of reference. The reason for this property may be understood considering
that a typical computer program flows in a straight-line fashion with program
loops and subroutine calls encountered frequently. When a program loop is
executed, the CPU repeatedly refers to the set of instructions in memory that
constitute the loop. Every time a given subroutine is called, its set of instruc-
tions are fetched from memory. Thus loops and subroutines tend to localize
the references to memory for fetching instructions. To a lesser degree, mem-
ory references to data also tend to be localized. Table-lookup procedures repeat-
edly refer to that portion in memory where the table is stored. Iterative
procedures refer to common memory locations and array of numbers are con-
fined within a local portion of memory. The result of all these observations
is the locality of reference property, which states that over a short interval
of time, the addresses generated by a typical program refer to a few localized
areas of memory repeatedly, while the remainder of memory is accessed
relatively infrequently.

If the active portions of the program and data are placed in a fast small
memory, the average memory access time can be reduced, thus reducing the
total execution time of the program. Such a fast small memory is referred to
as a cache memory. It is placed between the CPU and main memory as illus-
trated in Fig. 12-1. The cache memory access time is less than the access time
of main memory by a factor of 5 to 10. The cache is the fastest component in
the memory hierarchy and approaches the speed of CPU components.

The fundamental idea of cache organization is that by keeping the most
frequently accessed instructions and data in the fast cache memory, the

464 CHAPTER TWELVE Memory Organization

locality of
reference

Chapter12.qxd 2/2/2007 6:45 PM Page 464

EON
PreMedia

CONFIRMING PGS

average memory access time will approach the access time of the cache.
Although the cache is only a small fraction of the size of main memory, a large
fraction of memory requests will be found in the fast cache memory because
of the locality of reference property of programs.

The basic operation of the cache is as follows. When the CPU needs to
access memory, the cache is examined. If the word is found in the cache, it is
read from the fast memory. If the word addressed by the CPU is not found in
the cache, the main memory is accessed to read the word. A block of words
containing the one just accessed is then transferred from main memory to
cache memory. The block size may vary from one word (the one just accessed)
to about 16 words adjacent to the one just accessed. In this manner, some data
are transferred to cache so that future references to memory find the required
words in the fast cache memory.

The performance of cache memory is frequently measured in terms of a
quantity called hit ratio. When the CPU refers to memory and finds the word
in cache, it is said to produce a hit. If the word is not found in cache, it is in
main memory and it counts as a miss. The ratio of the number of hits divided
by the total CPU references to memory (hits plus misses) is the hit ratio. The
hit ratio is best measured experimentally by running representative programs
in the computer and measuring the number of hits and misses during a given
interval of time. Hit ratios of 0.9 and higher have been reported. This high
ratio verifies the validity of the locality of reference property.

The average memory access time of a computer system can be improved
considerably by use of a cache. If the hit ratio is high enough so that most of
the time the CPU accesses the cache instead of main memory, the average
access time is closer to the access time of the fast cache memory. For example,
a computer with cache access time of 100 ns, a main memory access time of
1000 ns, and a hit ratio of 0.9 produces an average access time of 200 ns. This
is a considerable improvement over a similar computer without a cache mem-
ory, whose access time is 1000 ns.

The basic characteristic of cache memory is its fast access time. Therefore,
very little or no time must be wasted when searching for words in the cache. The
transformation of data from main memory to cache memory is referred to as a
mapping process. Three types of mapping procedures are of practical interest
when considering the organization of cache memory:

1. Associative mapping
2. Direct mapping
3. Set-associative mapping

To help in the discussion of these three mapping procedures we will use a spe-
cific example of a memory organization as shown in Fig. 12-10. The main
memory can store 32K words of 12 bits each. The cache is capable of storing
512 of these words at any given time. For every word stored in cache, there is

SECTION 12-5 Cache Memory 465

hit ratio

mapping

Chapter12.qxd 2/2/2007 6:45 PM Page 465

EON
PreMedia

CONFIRMING PGS

a duplicate copy in main memory. The CPU communicates with both mem-
ories. It first sends a 15-bit address to cache. If there is a hit, the CPU accepts
the 12-bit data from cache. If there is a miss, the CPU reads the word from
main memory and the word is then transferred to cache.

Associative Mapping
The fastest and most flexible cache organization uses an associative memory.
This organization is illustrated in Fig. 12-11. The associative memory stores
both the address and content (data) of the memory word. This permits any
location in cache to store any word from main memory. The diagram shows
three words presently stored in the cache. The address value of 15 bits is
shown as a five-digit octal number and its corresponding 12-bit word is shown
as a four-digit octal number. A CPU address of 15 bits is placed in the argu-
ment register and the associative memory is searched for a matching address.

466 CHAPTER TWELVE Memory Organization

Main memory
32K � 12 Cache memory

512 � 12

CPU

Figure 12-10 Example of cache memory.

Address Data

CPU address (15 bits)

Argument register

0 1 0 0 0 3 4 5 0

6 7 1 0

1 2 3 4

0 2 7 7 7

2 2 3 4 5

Figure 12-11 Associative mapping cache (all numbers in octal).

Chapter12.qxd 2/2/2007 6:45 PM Page 466

EON
PreMedia

CONFIRMING PGS

If the address is found, the corresponding 12-bit data is read and sent to
the CPU. If no match occurs, the main memory is accessed for the word. The
address—data pair is then transferred to the associative cache memory. If the
cache is full, an address—data pair must be displaced to make room for a pair
that is needed and not presently in the cache. The decision as to what pair is
replaced is determined from the replacement algorithm that the designer
chooses for the cache. A simple procedure is to replace cells of the cache in
round-robin order whenever a new word is requested from main memory.
This constitutes a first-in first-out (FIFO) replacement policy.

Direct Mapping
Associative memories are expensive compared to random-access memories
because of the added logic associated with each cell. The possibility of using a
random-access memory for the cache is investigated in Fig. 12-12. The CPU
address of 15 bits is divided into two fields. The nine least significant bits con-
stitute the index field and the remaining six bits form the tag field. The figure
shows that main memory needs an address that includes both the tag and the
index bits. The number of bits in the index field is equal to the number of
address bits required to access the cache memory.

In the general case, there are 2k words in cache memory and 2n words in
main memory. The n-bit memory address is divided into two fields: k bits for
the index field and n � k bits for the tag field. The direct mapping cache
organization uses the n-bit address to access the main memory and the k-bit
index to access the cache. The internal organization of the words in the cache
memory is as shown in Fig. 12-13(b). Each word in cache consists of the data
word and its associated tag. When a new word is first brought into the cache,
the tag bits are stored alongside the data bits. When the CPU generates a

SECTION 12-5 Cache Memory 467

6 bits

00

77 777

000

777

000 32K � 12 512 � 12

Main memory

Address = 15 bits
Data = 12 bits

Cache memory
Address = 9 bits
Data = 12 bits

Octal

Tag Index

9 bits

address

Octal
address

Figure 12-12 Addressing relationships between main and cache memories.

tag field

Chapter12.qxd 2/2/2007 6:45 PM Page 467

EON
PreMedia

CONFIRMING PGS

memory request, the index field is used for the address to access the cache.
The tag field of the CPU address is compared with the tag in the word read
from the cache. If the two tags match, there is a hit and the desired data word
is in cache. If there is no match, there is a miss and the required word is read
from main memory. It is then stored in the cache together with the new tag,
replacing the previous value. The disadvantage of direct mapping is that the
hit ratio can drop considerably if two or more words whose addresses have the
same index but different tags are accessed repeatedly. However, this possibil-
ity is minimized by the fact that such words are relatively far apart in the
address range (multiples of 512 locations in this example).

To see how the direct-mapping organization operates, consider the
numerical example shown in Fig. 12-13. The word at address zero is presently
stored in the cache (index � 000, tag � 00, data � 1220). Suppose that the
CPU now wants to access the word at address 02000. The index address is
000, so it is used to access the cache. The two tags are then compared. The
cache tag is 00 but the address tag is 02, which does not produce a match.
Therefore, the main memory is accessed and the data word 5670 is transferred
to the CPU. The cache word at index address 000 is then replaced with a tag
of 02 and data of 5670.

The direct-mapping example just described uses a block size of one word.
The same organization but using a block size of 8 words is shown in Fig. 12-14.

468 CHAPTER TWELVE Memory Organization

1 2 2 0 1 2 2 0

6 7 1 0

0 0

Tag
Index

address Data

0 2

000

777

(b) Cache memory

00000

Memory
address Memory data

(a) Main Memory

00777

01000

01777

02000

02777

2 3 4 0

3 4 5 0

4 5 6 0

5 6 7 0

6 7 1 0

Figure 12-13 Direct mapping cache organization.

Chapter12.qxd 2/2/2007 6:45 PM Page 468

EON
PreMedia

CONFIRMING PGS

The index field is now divided into two parts: the block field and the word field.
In a 512-word cache there are 64 blocks of 8 words each, since 64 � 8 � 512.
The block number is specified with a 6-bit field and the word within the block
is specified with a 3-bit field. The tag field stored within the cache is common to
all eight words of the same block. Every time a miss occurs, an entire block of
eight words must be transferred from main memory to cache memory.
Although this takes extra time, the hit ratio will most likely improve with a larger
block size because of the sequential nature of computer programs.

Set-Associative Mapping
It was mentioned previously that the disadvantage of direct mapping is that
two words with the same index in their address but with different tag values
cannot reside in cache memory at the same time. A third type of cache organ-
ization, called set-associative mapping, is an improvement over the direct-
mapping organization in that each word of cache can store two or more words
of memory under the same index address. Each data word is stored together
with its tag and the number of tag—data items in one word of cache is said to
form a set. An example of a set-associative cache organization for a set size of
two is shown in Fig. 12-15. Each index address refers to two data words and
their associated tags. Each tag requires six bits and each data word has 12 bits,
so the word length is 2(6 � 12) � 36 bits. An index address of nine bits can
accommodate 512 words. Thus the size of cache memory is 512 � 36. It can
accommodate 1024 words of main memory since each word of cache contains
two data words. In general, a set-associative cache of set size k will accommo-
date k words of main memory in each word of cache.

SECTION 12-5 Cache Memory 469

Index

Block 0

Block 1

Block 63

000 0 1 3 4 5 0

007

010

017

770

777

0 1

0 2

0 2

6 5 7 8

6 7 1 0

Tag Data 6

Tag Block Word

Index

6 3

Figure 12-14 Direct mapping cache with block size of 8 words.

Chapter12.qxd 2/2/2007 6:45 PM Page 469

EON
PreMedia

CONFIRMING PGS

The octal numbers listed in Fig. 12-15 are with reference to the main
memory contents illustrated in Fig. 12-13(a). The words stored at addresses
01000 and 02000 of main memory are stored in cache memory at index
address 000. Similarly, the words at addresses 02777 and 00777 are stored in
cache at index address 777. When the CPU generates a memory request, the
index value of the address is used to access the cache. The tag field of the CPU
address is then compared with both tags in the cache to determine if a match
occurs. The comparison logic is done by an associative search of the tags in the
set similar to an associative memory search: thus the name “set-associative.”
The hit ratio will improve as the set size increases because more words with the
same index but different tags can reside in cache. However, an increase in the
set size increases the number of bits in words of cache and requires more com-
plex comparison logic.

When a miss occurs in a set-associative cache and the set is full, it is nec-
essary to replace one of the tag-data items with a new value. The most com-
mon replacement algorithms used are: random replacement, first-in, first-out
(FIFO), and least recently used (LRU). With the random replacement policy
the control chooses one tag—data item for replacement at random. The FIFO
procedure selects for replacement the item that has been in the set the longest.
The LRU algorithm selects for replacement the item that has been least
recently used by the CPU. Both FIFO and LRU can be implemented by
adding a few extra bits in each word of cache.

Writing into Cache
An important aspect of cache organization is concerned with memory write
requests. When the CPU finds a word in cache during a read operation, the
main memory is not involved in the transfer. However, if the operation is a
write, there are two ways that the system can proceed.

470 CHAPTER TWELVE Memory Organization

Index

000 0 1 3 4 5 0 0 2 5 6 7 0

0 2 6 7 1 0 0 0 2 3 4 0777

Tag Data Tag Data

Figure 12-15 Two-way set-associative mapping cache.

replacement
algorithms

Chapter12.qxd 2/2/2007 6:45 PM Page 470

EON
PreMedia

CONFIRMING PGS

The simplest and most commonly used procedure is to update main
memory with every memory write operation, with cache memory being
updated in parallel if it contains the word at the specified address. This is
called the write-through method. This method has the advantage that main
memory always contains the same data as the cache. This characteristic is
important in systems with direct memory access transfers. It ensures that the
data residing in main memory are valid at all times so that an I/O device com-
municating through DMA would receive the most recent updated data.

The second procedure is called the write-back method. In this method
only the cache location is updated during a write operation. The location is
then marked by a flag so that later when the word is removed from the cache
it is copied into main memory. The reason for the write-back method is that
during the time a word resides in the cache, it may be updated several times;
however, as long as the word remains in the cache, it does not matter whether
the copy in main memory is out of date, since requests from the word are filled
from the cache. It is only when the word is displaced from the cache that an
accurate copy need be rewritten into main memory. Analytical results indicate
that the number of memory writes in a typical program ranges between 10 and
30 percent of the total references to memory.

Cache Initialization
One more aspect of cache organization that must be taken into consideration
is the problem of initialization. The cache is initialized when power is applied
to the computer or when the main memory is loaded with a complete set of
programs from auxiliary memory. After initialization the cache is considered
to be empty, but in effect it contains some nonvalid data. It is customary to
include with each word in cache a valid bit to indicate whether or not the word
contains valid data.

The cache is initialized by clearing all the valid bits to 0. The valid bit of
a particular cache word is set to 1 the first time this word is loaded from main
memory and stays set unless the cache has to be initialized again. The intro-
duction of the valid bit means that a word in cache is not replaced by another
word unless the valid bit is set to 1 and a mismatch of tags occurs. If the valid
bit happens to be 0, the new word automatically replaces the invalid data.
Thus the initialization condition has the effect of forcing misses from the cache
until it fills with valid data.

12-6 Virtual Memory
In a memory hierarchy system, programs and data are first stored in auxiliary
memory. Portions of a program or data are brought into main memory as they
are needed by the CPU. Virtual memory is a concept used in some large com-
puter systems that permit the user to construct programs as though a large

SECTION 12-6 Virtual Memory 471

write-through

write-back

valid bit

Chapter12.qxd 2/2/2007 6:45 PM Page 471

EON
PreMedia

CONFIRMING PGS

memory space were available, equal to the totality of auxiliary memory. Each
address that is referenced by the CPU goes through an address mapping from
the so-called virtual address to a physical address in main memory. Virtual
memory is used to give programmers the illusion that they have a very large
memory at their disposal, even though the computer actually has a relatively
small main memory. A virtual memory system provides a mechanism for
translating program-generated addresses into correct main memory locations.
This is done dynamically, while programs are being executed in the CPU. The
translation or mapping is handled automatically by the hardware by means of
a mapping table.

Address Space and Memory Space
An address used by a programmer will be called a virtual address, and the set
of such addresses the address space. An address in main memory is called a loca-
tion or physical address. The set of such locations is called the memory space. Thus
the address space is the set of addresses generated by programs as they refer-
ence instructions and data; the memory space consists of the actual main
memory locations directly addressable for processing. In most computers the
address and memory spaces are identical. The address space is allowed to be
larger than the memory space in computers with virtual memory.

As an illustration, consider a computer with a main-memory capacity of
32K words (K � 1024). Fifteen bits are needed to specify a physical address in
memory since 32K � 215. Suppose that the computer has available auxiliary
memory for storing 220 � 1024K words. Thus auxiliary memory has a capac-
ity for storing information equivalent to the capacity of 32 main memories.
Denoting the address space by N and the memory space by M, we then have
for this example N � 1024K and M � 32K.

In a multiprogram computer system, programs and data are transferred
to and from auxiliary memory and main memory based on demands imposed
by the CPU. Suppose that program 1 is currently being executed in the CPU.
Program 1 and a portion of its associated data are moved from auxiliary
memory into main memory as shown in Fig. 12-16. Portions of programs and
data need not be in contiguous locations in memory since information is being
moved in and out, and empty spaces may be available in scattered locations
in memory.

In a virtual memory system, programmers are told that they have the
total address space at their disposal. Moreover, the address field of the instruc-
tion code has a sufficient number of bits to specify all virtual addresses. In our
example, the address field of an instruction code will consist of 20 bits but
physical memory addresses must be specified with only 15 bits. Thus CPU will
reference instructions and data with a 20-bit address, but the information at
this address must be taken from physical memory because access to auxiliary
storage for individual words will be prohibitively long. (Remember that for

472 CHAPTER TWELVE Memory Organization

address space
memory space

Chapter12.qxd 2/2/2007 6:45 PM Page 472

EON
PreMedia

CONFIRMING PGS

efficient transfers, auxiliary storage moves an entire record to the main
memory.) A table is then needed, as shown in Fig. 12-17, to map a virtual
address of 20 bits to a physical address of 15 bits. The mapping is a dynamic
operation, which means that every address is translated immediately as a word
is referenced by CPU.

The mapping table may be stored in a separate memory as shown in
Fig. 12-17 or in main memory. In the first case, an additional memory unit is
required as well as one extra memory access time. In the second case, the

SECTION 12-6 Virtual Memory 473

Auxiliary memory

Main memory

Memory space
M � 32K � 215

Address space
N � 1024K � 220

Program 1
Program 1

Data1, 1

Data 1, 1

Data 1, 2

Data 2, 1

Program 2

Figure 12-16 Relation between address and memory space in a virtual
memory system.

Virtual address

Virtual
address
register
(20 bits)

Memory
mapping

table

Main memory
address
register
(15 bits)

Main
memory

Main memory
buffer registerMemory table

buffer register

Figure 12-17 Memory table for mapping a virtual address.

Chapter12.qxd 2/2/2007 6:45 PM Page 473

EON
PreMedia

CONFIRMING PGS

table takes space from main memory and two accesses to memory are
required with the program running at half speed. A third alternative is to use
an associative memory as explained below.

Address Mapping Using Pages
The table implementation of the address mapping is simplified if the infor-
mation in the address space and the memory space are each divided into
groups of fixed size. The physical memory is broken down into groups of
equal size called blocks, which may range from 64 to 4096 words each. The
term page refers to groups of address space of the same size. For example, if
a page or block consists of 1K words, then, using the previous example,
address space is divided into 1024 pages and main memory is divided into
32 blocks. Although both a page and a block are split into groups of 1K
words, a page refers to the organization of address space, while a block refers
to the organization of memory space. The programs are also considered to be
split into pages. Portions of programs are moved from auxiliary memory to
main memory in records equal to the size of a page. The term “page frame”
is sometimes used to denote a block.

Consider a computer with an address space of 8K and a memory space
of 4K. If we split each into groups of 1K words we obtain eight pages and four
blocks as shown in Fig. 12-18. At any given time, up to four pages of address
space may reside in main memory in any one of the four blocks.

The mapping from address space to memory space is facilitated if each
virtual address is considered to be represented by two numbers: a page num-
ber address and a line within the page. In a computer with 2P words per page,
p bits are used to specify a line address and the remaining high-order bits of
the virtual address specify the page number. In the example of Fig. 12-18, a
virtual address has 13 bits. Since each page consists of 210 � 1024 words, the
high-order three bits of a virtual address will specify one of the eight pages and
the low-order 10 bits give the line address within the page. Note that the line
address in address space and memory space is the same; the only mapping
required is from a page number to a block number.

The organization of the memory mapping table in a paged system is
shown in Fig. 12-19. The memory-page table consists of eight words, one for
each page. The address in the page table denotes the page number and the
content of the word gives the block number where that page is stored in main
memory. The table shows that pages 1, 2, 5, and 6 are now available in main
memory in blocks 3, 0, 1, and 2, respectively. A presence bit in each location
indicates whether the page has been transferred from auxiliary memory into
main memory. A 0 in the presence bit indicates that this page is not available
in main memory. The CPU references a word in memory with a virtual
address of 13 bits. The three high-order bits of the virtual address specify a
page number and also an address for the memory-page table. The content of

474 CHAPTER TWELVE Memory Organization

pages and blocks

page frame

Chapter12.qxd 2/2/2007 6:45 PM Page 474

EON
PreMedia

CONFIRMING PGS

the word in the memory page table at the page number address is read out
into the memory table buffer register. If the presence bit is a 1, the block num-
ber thus read is transferred to the two high-order bits of the main memory
address register. The line number from the virtual address is transferred into
the 10 low-order bits of the memory address register. A read signal to main

SECTION 12-6 Virtual Memory 475

Page 0

Page 1

Page 2

Page 3

Page 4 Block 0

Block 1

Block 2

Block 3

Page 5

Page 6

Page 7

Address space
N � 8K � 213

Memory space
M � 4K � 212

Figure 12-18 Address space and memory space split into groups of 1K words.

Page no. Line number

Virtual address

0

111

00

01

10

000

1 0 1

Table
address

Presence
bit

Main memory
address register

01 0101010011

Main memory

Block 0

Block 1

Block 2

Block 3

MBR

Memory page table

0 1 0 1 0 1 0 0 1 1

001

010

011

100

101

110

111

1

0

0

1

1
0

101

Figure 12-19 Memory table in a paged system.

Chapter12.qxd 2/2/2007 6:45 PM Page 475

EON
PreMedia

CONFIRMING PGS

memory transfers the content of the word to the main memory buffer register
ready to be used by the CPU. If the presence bit in the word read from the
page table is 0, it signifies that the content of the word referenced by the vir-
tual address does not reside in main memory. A call to the operating system
is then generated to fetch the required page from auxiliary memory and place
it into main memory before resuming computation.

Associative Memory Page Table
A random-access memory page table is inefficient with respect to storage uti-
lization. In the example of Fig. 12-19 we observe that eight words of memory
are needed, one for each page, but at least four words will always be marked
empty because main memory cannot accommodate more than four blocks. In
general, a system with n pages and m blocks would require a memory-page
table of n locations of which up to m blocks will be marked with block num-
bers and all others will be empty. As a second numerical example, consider
an address space of 1024K words and memory space of 32K words. If each
page or block contains 1K words, the number of pages is 1024 and the num-
ber of blocks 32. The capacity of the memory-page table must be 1024 words
and only 32 locations may have a presence bit equal to 1. At any given time,
at least 992 locations will be empty and not in use.

A more efficient way to organize the page table would be to construct it
with a number of words equal to the number of blocks in main memory. In
this way the size of the memory is reduced and each location is fully utilized.
This method can be implemented by means of an associative memory with

476 CHAPTER TWELVE Memory Organization

Line number1 0 1

1 1 1 0 0

0 0 1 1 1

0 1 0 0 0

1 0 1 0 1

1 1 0 1 0

Argument register

Key register

Page no. Block no.

Associative memory

Virtual address

Page no.

Figure 12-20 An associative memory page table.

Chapter12.qxd 2/2/2007 6:45 PM Page 476

EON
PreMedia

CONFIRMING PGS

each word in memory containing a page number together with its correspon-
ding block number. The page field in each word is compared with the page
number in the virtual address. If a match occurs, the word is read from mem-
ory and its corresponding block number is extracted.

Consider again the case of eight pages and four blocks as in the example
of Fig. 12-19. We replace the random access memory-page table with an
associative memory of four words as shown in Fig. 12-20. Each entry in the
associative memory array consists of two fields. The first three bits specify a
field for storing the page number. The last two bits constitute a field for stor-
ing the block number. The virtual address is placed in the argument register.
The page number bits in the argument register are compared with all page
numbers in the page field of the associative memory. If the page number is
found, the 5-bit word is read out from memory. The corresponding block
number, being in the same word, is transferred to the main memory address
register. If no match occurs, a call to the operating system is generated to bring
the required page from auxiliary memory.

Page Replacement
A virtual memory system is a combination of hardware and software tech-
niques. The memory management software system handles all the software
operations for the efficient utilization of memory space. It must decide (1)
which page in main memory ought to be removed to make room for a new
page, (2) when a new page is to be transferred from auxiliary memory to main
memory, and (3) where the page is to be placed in main memory. The hard-
ware mapping mechanism and the memory management software together
constitute the architecture of a virtual memory.

When a program starts execution, one or more pages are transferred into
main memory and the page table is set to indicate their position. The program
is executed from main memory until it attempts to reference a page that is still
in auxiliary memory. This condition is called page fault. When page fault
occurs, the execution of the present program is suspended until the required
page is brought into main memory. Since loading a page from auxiliary mem-
ory to main memory is basically an I/O operation, the operating system
assigns this task to the I/O processor. In the meantime, control is transferred
to the next program in memory that is waiting to be processed in the CPU.
Later, when the memory block has been assigned and the transfer completed,
the original program can resume its operation.

When a page fault occurs in a virtual memory system, it signifies that the
page referenced by the CPU is not in main memory. A new page is then trans-
ferred from auxiliary memory to main memory. If main memory is full, it
would be necessary to remove a page from a memory block to make room for
the new page. The policy for choosing pages to remove is determined from
the replacement algorithm that is used. The goal of a replacement policy is to
try to remove the page least likely to be referenced in the immediate future.

SECTION 12-6 Virtual Memory 477

page fault

Chapter12.qxd 2/2/2007 6:45 PM Page 477

EON
PreMedia

CONFIRMING PGS

Two of the most common replacement algorithms used are the first-in,
first-out (FIFO) and the least recently used (LRU). The FIFO algorithm selects
for replacement the page that has been in memory the longest time. Each time
a page is loaded into memory, its identification number is pushed into a FIFO
stack. FIFO will be full whenever memory has no more empty blocks. When
a new page must be loaded, the page least recently brought in is removed. The
page to be removed is easily determined because its identification number is
at the top of the FIFO stack. The FIFO replacement policy has the advantage
of being easy to implement. It has the disadvantage that under certain cir-
cumstances pages are removed and loaded from memory too frequently.

The LRU policy is more difficult to implement but has been more attrac-
tive on the assumption that the least recently used page is a better candidate for
removal than the least recently loaded page as in FIFO. The LRU algorithm can
be implemented by associating a counter with every page that is in main mem-
ory. When a page is referenced, its associated counter is set to zero. At fixed inter-
vals of time, the counters associated with all pages presently in memory are
incremented by 1. The least recently used page is the page with the highest count.
The counters are often called aging registers, as their count indicates their age, that
is, how long ago their associated pages have been referenced.

12-7 Memory Management Hardware
In a multiprogramming environment where many programs reside in mem-
ory it becomes necessary to move programs and data around the memory, to
vary the amount of memory in use by a given program, and to prevent a pro-
gram from changing other programs. The demands on computer memory
brought about by multiprogramming have created the need for a memory
management system. A memory management system is a collection of hard-
ware and software procedures for managing the various programs residing in
memory. The memory management software is part of an overall operating
system available in many computers. Here we are concerned with the hard-
ware unit associated with the memory management system.

The basic components of a memory management unit are:

1. A facility for dynamic storage relocation that maps logical memory ref-
erences into physical memory addresses

2. A provision for sharing common programs stored in memory by dif-
ferent users

3. Protection of information against unauthorized access between users
and preventing users from changing operating system functions

The dynamic storage relocation hardware is a mapping process similar
to the paging system described in Sec. 12-6. The fixed page size used in the

478 CHAPTER TWELVE Memory Organization

FIFO

LRU

Chapter12.qxd 2/2/2007 6:45 PM Page 478

EON
PreMedia

CONFIRMING PGS

virtual memory system causes certain difficulties with respect to program size
and the logical structure of programs. It is more convenient to divide pro-
grams and data into logical parts called segments. A segment is a set of logi-
cally related instructions or data elements associated with a given name.
Segments may be generated by the programmer or by the operating system.
Examples of segments are a subroutine, an array of data, a table of symbols,
or a user’s program.

The sharing of common programs is an integral part of a multiprogram-
ming system. For example, several users wishing to compile their Fortran pro-
grams should be able to share a single copy of the compiler rather than each
user having a separate copy in memory. Other system programs residing in
memory are also shared by all users in a multiprogramming system without
having to produce multiple copies.

The third issue in multiprogramming is protecting one program from
unwanted interaction with another. An example of unwanted interaction is
one user’s unauthorized copying of another user’s program. Another aspect of
protection is concerned with preventing the occasional user from performing
operating system functions and thereby interrupting the orderly sequence of
operations in a computer installation. The secrecy of certain programs must
be kept from unauthorized personnel to prevent abuses in the confidential
activities of an organization.

The address generated by a segmented program is called a logical address.
This is similar to a virtual address except that logical address space is associ-
ated with variable-length segments rather than fixed-length pages. The logical
address may be larger than the physical memory address as in virtual mem-
ory, but it may also be equal, and sometimes even smaller than the length of
the physical memory address. In addition to relocation information, each seg-
ment has protection information associated with it. Shared programs are
placed in a unique segment in each user’s logical address space so that a sin-
gle physical copy can be shared. The function of the memory management
unit is to map logical addresses into physical addresses similar to the virtual
memory mapping concept.

Segmented-Page Mapping
It was already mentioned that the property of logical space is that it uses
variable-length segments. The length of each segment is allowed to grow and
contract according to the needs of the program being executed. One way of
specifying the length of a segment is by associating with it a number of equal-size
pages. To see how this is done, consider the logical address shown in Fig. 12-21.
The logical address is partitioned into three fields. The segment field specifies
a segment number. The page field specifies the page within the segment and
the word field gives the specific word within the page. A page field of k bits
can specify up to 2k pages. A segment number may be associated with just one

SECTION 12-7 Memory Management Hardware 479

segment

logical address

Chapter12.qxd 2/2/2007 6:45 PM Page 479

EON
PreMedia

CONFIRMING PGS

page or with as many as 2k pages. Thus the length of a segment would vary
according to the number of pages that are assigned to it.

The mapping of the logical address into a physical address is done by
means of two tables, as shown in Fig. 12-21(a). The segment number of the
logical address specifies the address for the segment table. The entry in the

480 CHAPTER TWELVE Memory Organization

Logical address

Segment

Segment table Page table

Page Word

WordBlock

Physical address

(a) Logical to physical address mapping

(b) Associative memory translation look-aside buffer (TLB)

Argument register

Segment Page Block

�

Figure 12-21 Mapping in segmented-page memory management unit.

Chapter12.qxd 2/2/2007 6:45 PM Page 480

EON
PreMedia

CONFIRMING PGS

segment table is a pointer address for a page table base. The page table base
is added to the page number given in the logical address. The sum produces
a pointer address to an entry in the page table. The value found in the page
table provides the block number in physical memory. The concatenation of
the block field with the word field produces the final physical mapped address.

The two mapping tables may be stored in two separate small memories
or in main memory. In either case, a memory reference from the CPU will
require three accesses to memory: one from the segment table, one from the
page table, and the third from main memory. This would slow the system sig-
nificantly when compared to a conventional system that requires only one ref-
erence to memory. To avoid this speed penalty, a fast associative memory is
used to hold the most recently referenced table entries. (This type of memory
is sometimes called a translation lookaside buffer, abbreviated TLB.) The first
time a given block is referenced, its value together with the corresponding seg-
ment and page numbers are entered into the associative memory as shown in
Fig. 12-21(b). Thus the mapping process is first attempted by associative search
with the given segment and page numbers. If it succeeds, the mapping delay
is only that of the associative memory. If no match occurs, the slower table
mapping of Fig. 12-21(a) is used and the result transformed into the associative
memory for future reference.

Numerical Example
A numerical example may clarify the operation of the memory management
unit. Consider the 20-bit logical address specified in Fig. 12-22(a). The 4-bit
segment number specifies one of 16 possible segments. The 8-bit page
number can specify up to 256 pages, and the 8-bit word field implies a page
size of 256 words. This configuration allows each segment to have any num-
ber of pages up to 256. The smallest possible segment will have one page or
256 words. The largest possible segment will have 256 pages, for a total of
256 � 256 � 64K words.

The physical memory shown in Fig. 12-22(b) consists of 220 words of
32 bits each. The 20-bit address is divided into two fields: a 12-bit block
number and an 8-bit word number. Thus, physical memory is divided into
4096 blocks of 256 words each. A page in a logical address has a correspon-
ding block in physical memory. Note that both the logical and physical
address have 20 bits. In the absence of a memory management unit, the 20-bit
address from the CPU can be used to access physical memory directly.

Consider a program loaded into memory that requires five pages. The
operating system may assign to this program segment 6 and pages 0 through 4,
as shown in Fig. 12-23(a). The total logical address range for the program is
from hexadecimal 60000 to 604FF. When the program is loaded into physical
memory, it is distributed among five blocks in physical memory where the
operating system finds empty spaces. The correspondence between each
memory block and logical page number is then entered in a table as shown in

SECTION 12-7 Memory Management Hardware 481

Chapter12.qxd 2/2/2007 6:45 PM Page 481

EON
PreMedia

CONFIRMING PGS

Fig. 12-23(b). The information from this table is entered in the segment and
page tables as shown in Fig. 12-24(a).

Now consider the specific logical address given in Fig. 12-24. The 20-bit
address is listed as a five-digit hexadecimal number. It refers to word number
7E of page 2 in segment 6. The base of segment 6 in the page table is
at address 35. Segment 6 has associated with it five pages, as shown in the page
table at addresses 35 through 39. Page 2 of segment 6 is at address 35 � 2 � 37.
The physical memory block is found in the page table to be 019. Word 7E in
block 19 gives the 20-bit physical address 0197E. Note that page 0 of segment
6 maps into block 12 and page 1 maps into block 0. The associative memory

482 CHAPTER TWELVE Memory Organization

220 � 32
Physical memory

Segment Page

12

Block Word

Word

8

8

84

(a) Logical address format: 16 segments of 256 pages each,
 each page has 256 words

(b) Physical address format: 4096 blocks of 256 words each,
 each word has 32 bits

Figure 12-22 An example of logical and physical addresses.

Hexadecimal
address Page number

(a) Logical address assignment (b) Segment-page versus
 memory block assignment

Segment Page BlockPage 060000

60100

60200

60300
60400
604FF

Page 1

Page 2

Page 3

Page 4

6
6
6
6
6

00
01
02
03
04

012
000
019
053
A61

Figure 12-23 Example of logical and physical memory address assignment.

Chapter12.qxd 2/2/2007 6:45 PM Page 482

EON
PreMedia

CONFIRMING PGS

6 02 7E

(a) Segment and page table mapping

(b) Associative memory (TLB)

Segment Page Block

 6 02 019

 6 04 A61

Segment table Page table

Logical address (in haxadecimal)

Physical memory

Block 0

Block 12

32-bit word

0 00 00000

000FF

01200

012FF

01900
0197E
019FF

35

36

37

38

39 A61

A3 012

053

019

000

012

6

F A3

35

Figure 12-24 Logical to physical memory mapping example (all numbers are
in hexadecimal).

483

Chapter12.qxd 2/2/2007 6:45 PM Page 483

EON
PreMedia

CONFIRMING PGS

in Fig. 12-24(b) shows that pages 2 and 4 of segment 6 have been referenced
previously and therefore their corresponding block numbers are stored in the
associative memory.

From this example it should be evident that the memory management
system can assign any number of pages to each segment. Each logical page can
be mapped into any block in physical memory. Pages can move to different
blocks in memory depending on memory space requirements. The only updat-
ing required is the change of the block number in the page table. Segments can
grow or shrink independently without affecting each other. Different segments
can use the same block of memory if it is required to share a program by many
users. For example, block number 12 in physical memory can be assigned a
second logical address F0000 through F00FF. This specifies segment number
15 and page 0, which maps to block 12 as shown in Fig. 12-24(a).

Memory Protection
Memory protection can be assigned to the physical address or the logical
address. The protection of memory through the physical address can be done
by assigning to each block in memory a number of protection bits that indi-
cate the type of access allowed to its corresponding block. Every time a page
is moved from one block to another it would be necessary to update the block
protection bits. A much better place to apply protection is in the logical
address space rather than the physical address space. This can be done by
including protection information within the segment table or segment register
of the memory management hardware.

The content of each entry in the segment table or a segment register is
called a descriptor. A typical descriptor would contain, in addition to a base
address field, one or two additional fields for protection purposes. A typical
format for a segment descriptor is shown in Fig. 12-25. The base address field
gives the base of the page table address in a segmented-page organization or
the block base address in a segment register organization. This is the address
used in mapping from a logical to the physical address. The length field gives
the segment size by specifying the maximum number of pages assigned to the
segment. The length field is compared against the page number in the logical
address. A size violation occurs if the page number falls outside the segment
length boundary. Thus a given program and its data cannot access memory
not assigned to it by the operating system.

The protection field in a segment descriptor specifies the access rights
available to the particular segment. In a segmented-page organization, each

484 CHAPTER TWELVE Memory Organization

Base address Length Protection

Figure 12-25 Format of a typical segment descriptor.

Chapter12.qxd 2/2/2007 6:45 PM Page 484

EON
PreMedia

CONFIRMING PGS

entry in the page table may have its own protection field to describe the
access rights of each page. The protection information is set into the descrip-
tor by the master control program of the operating system. Some of the
access rights of interest that are used for protecting the programs residing in
memory are:

1. Full read and write privileges
2. Read only (write protection)
3. Execute only (program protection)
4. System only (operating system protection)

Full read and write privileges are given to a program when it is execut-
ing its own instructions. Write protection is useful for sharing system programs
such as utility programs and other library routines. These system programs are
stored in an area of memory where they can be shared by many users. They
can be read by all programs, but no writing is allowed. This protects them
from being changed by other programs.

The execute-only condition protects programs from being copied. It
restricts the segment to be referenced only during the instruction fetch phase
but not during the execute phase. Thus it allows the users to execute the seg-
ment program instructions but prevents them from reading the instructions as
data for the purpose of copying their content.

Portions of the operating system will reside in memory at any given time.
These system programs must be protected by making them inaccessible to
unauthorized users. The operating system protection condition is placed in the
descriptors of all operating system programs to prevent the occasional user
from accessing operating system segments.

SECTION 12-7 Memory Management Hardware 485

PROBLEMS

12-1. a. How many 128 � 8 RAM chips are needed to provide a memory capac-
ity of 2048 bytes?

b. How many lines of the address bus must be used to access 2048 bytes of
memory? How many of these lines will be common to all chips?

c. How many lines must be decoded for chip select? Specify the size of the
decoders.

12-2. A computer uses RAM chips of 1024 � 1 capacity.
a. How many chips are needed, and how should their address lines be con-

nected to provide a memory capacity of 1024 bytes?
b. How many chips are needed to provide a memory capacity of

16K bytes? Explain in words how the chips are to be connected to the
address bus.

Chapter12.qxd 2/2/2007 6:45 PM Page 485

EON
PreMedia

CONFIRMING PGS

12-3. A ROM chip of 1024 � 8 bits has four select inputs and operates from
a 5 volt power supply. How many pins are needed for the IC package?
Draw a block diagram and label all input and output terminals in the ROM.

12-4. Extend the memory system of Fig. 12-4 to 4096 bytes of RAM and 4096
bytes of ROM. List the memory-address map and indicate what size
decoders are needed.

12-5. A computer employs RAM chips of 256 � 8 and ROM chips of 1024 � 8.
The computer system needs 2K bytes of RAM, 4K bytes of ROM, and four
interface units, each with four registers. A memory-mapped I/O configura-
tion is used. The two highest-order bits of the address bus are assigned 00
for RAM, 01 for ROM, and 10 for interface registers.
a. How many RAM and ROM chips are needed?
b. Draw a memory-address map for the system.
c. Give the address range in hexadecimal for RAM, ROM, and interface.

12-6. An 8-bit computer has a 16-bit address bus. The first 15 lines of the address are
used to select a bank of 32K bytes of memory. The high-order bit of the address
is used to select a register which receives the contents of the data bus. Explain
how this configuration can be used to extend the memory capacity of the sys-
tem to eight banks of 32K bytes each, for a total of 256K bytes of memory.

12-7. A magnetic disk system has the following parameters:
Ts � average time to position the magnetic head over a track
R � rotation speed of disk in revolutions per second
Nt � number of bits per track
Ns � number of bits per sector

Calculate the average time Ta that it will take to read one sector.
12-8. What is the transfer rate of an eight-track magnetic tape whose speed is

120 inches per second and whose density is 1600 bits per inch?
12-9. Obtain the complement function for the match logic of one word in an asso-

ciative memory. In other words, show that Mi� is the sum of exclusive-OR
functions. Draw the logic diagram for Mi� and terminate it with an inverter
to obtain Mi.

12-10. Obtain the Boolean function for the match logic of one word in an associa-
tive memory taking into consideration a tag bit that indicates whether the
word is active or inactive.

12-11. What additional logic is required to give a no-match result for a word in an
associative memory when all key bits are zeros?

12-12. a. Draw the logic diagram of all the cells of one word in an associative
memory. Include the read and write logic of Fig. 12-8 and the match
logic of Fig. 12-9.

b. Draw the logic diagram of all cells along one vertical column (column j)
in an associative memory. Include a common output line for all bits in
the same column.

c. From the diagrams in (a) and (b) show that if output Mi is connected to
the read line of the same word, then the matched word will be read out,
provided that only one word matches the masked argument.

486 CHAPTER TWELVE Memory Organization

Chapter12.qxd 2/2/2007 6:45 PM Page 486

EON
PreMedia

CONFIRMING PGS

12-13. Describe in words and by means of a block diagram how multiple matched
words can be read out from an associative memory.

12-14. Derive the logic of one cell and of an entire word for an associative mem-
ory that has an output indicator when the unmasked argument is greater
than (but not equal to) the word in the associative memory.

12-15. A two-way set associative cache memory uses blocks of four words. The
cache can accommodate a total of 2048 words from main memory. The
main memory size is 128K � 32.
a. Formulate all pertinent information required to construct the cache

memory.
b. What is the size of the cache memory?

12-16. The access time of a cache memory is 100 ns and that of main memory
1000 ns. It is estimated that 80 percent of the memory requests are for read
and the remaining 20 percent for write. The hit ratio for read accesses only
is 0.9. A write-through procedure is used.
a. What is the average access time of the system considering only memory

read cycles?
b. What is the average access time of the system for both read and write

requests?
c. What is the hit ratio taking into consideration the write cycles?

12-17. A four-way set-associative cache memory has four words in each set.
A replacement procedure based on the least recently used (LRU)
algorithm is implemented by means of 2-bit counters associated with
each word in the set. A value in the range 0 to 3 is thus recorded for each
word. When a hit occurs, the counter associated with the referenced
word is set to 0, those counters with values originally lower than the ref-
erenced one are incremented by 1, and all others remain unchanged. If a
miss occurs, the word with counter value 3 is removed, the new word
is put in its place, and its counter is set to 0. The other three counters
are incremented by 1. Show that this procedure works for the following
sequence of word reference: A, B, C, D, B, E, D, A, C, E, C, E. (Start
with A, B, C, D as the initial four words, with word A being the least
recently used.)

12-18. A digital computer has a memory unit of 64K � 16 and a cache memory
of 1K words. The cache uses direct mapping with a block size of
four words.
a. How many bits are there in the tag, index, block, and word fields of the

address format?
b. How many bits are there in each word of cache, and how are they

divided into functions? Include a valid bit.
c. How many blocks can the cache accommodate?

12-19. An address space is specified by 24 bits and the corresponding memory
space by 16 bits.
a. How many words are there in the address space?
b. How many words are there in the memory space?
c. If a page consists of 2K words, how many pages and blocks are there in

the system?

SECTION 12-7 Memory Management Hardware 487

Chapter12.qxd 2/2/2007 6:45 PM Page 487

EON
PreMedia

CONFIRMING PGS

12-20. A virtual memory has a page size of 1K words. There are eight pages and
four blocks. The associative memory page table contains the following
entries:

Page Block

0 3
1 1
4 2
6 0

Make a list of all virtual addresses (in decimal) that will cause a page fault if
used by the CPU.

12-21. A virtual memory system has an address space of 8K words, a memory
space of 4K words, and page and block sizes of 1K words (see Fig. 12-18).
The following page reference changes occur during a given time interval.
(Only page changes are listed. If the same page is referenced again, it is not
listed twice.)

4 2 0 1 2 6 1 4 0 1 0 2 3 5 7
Determine the four pages that are resident in main memory after each page
reference change if the replacement algorithm used is (a) FIFO; (b) LRU.

12-22. Determine the two logical addresses from Fig. 12-24(a) that will access phys-
ical memory at hexadecimal address 012AF.

12-23. The logical address space in a computer system consists of 128 segments.
Each segment can have up to 32 pages of 4K words in each. Physical mem-
ory consists of 4K blocks of 4K words in each. Formulate the logical and
physical address formats.

12-24. Give the binary number of the logical address formulated in Prob. 12-23 for
segment 36 and word number 2000 in page 15.

488 CHAPTER TWELVE Memory Organization

1. Baer, J. L., Computer Systems Architecture. Potomac, MD: Computer Science Press,
1980.

2. Dasgupta, S., Computer Architecture: A Modern Synthesis, Vol. 1. New York: John
Wiley, 1989.

3. Gibson, G. A., Computer Systems Concepts and Design. Englewood Cliffs, NJ: Prentice
Hall, 1991.

4. Hamacher, V. C., Z. G. Vranesic, and S. G. Zaky, Computer Organization, 3rd ed.
New York: McGraw-Hill, 1990.

5. Hwang, K., and F. A. Briggs, Computer Architecture and Parallel Processing. New York:
McGraw-Hill, 1984.

6. Kain, R., Computer Architecture: Software and Hardware, Vol. 1. Englewood Cliffs,
NJ: Prentice Hall, 1989.

REFERENCES

Chapter12.qxd 2/2/2007 6:45 PM Page 488

EON
PreMedia

CONFIRMING PGS

7. Langholz, G., J. Francioni, and A. Kandel, Elements of Computer Organization.
Englewood Cliffs, NJ: Prentice Hall, 1989.

8. Murray, W. D., Computer and Digital System Architecture. Englewood Cliffs, NJ:
Prentice Hall, 1990.

9. Patterson, D. A., and J. L. Hennessy, Computer Architecture: A Quantitative Approach.
San Mateo, CA: Morgan Kaufmann Publishers, 1990.

10. Pollard, L. H., Computer Design and Architecture. Englewood Cliffs, NJ: Prentice
Hall, 1990.

11. Stone, H. S. (ed.), Introduction to Computer Architecture, 2nd ed. Chicago: Science
Research Associates, 1980.

SECTION 12-7 Memory Management Hardware 489

Chapter12.qxd 2/2/2007 6:45 PM Page 489

EON
PreMedia

CONFIRMING PGS

Chapter12.qxd 2/2/2007 6:45 PM Page 490

This page is intentionally left blank.

EON
PreMedia

CONFIRMING PGS

IN THIS CHAPTER

13-1 Characteristics of Multiprocessors
13-2 Interconnection Structures
13-3 Interprocessor Arbitration
13-4 Interprocessor Communication and Synchronization

13-1 Characteristics of Multiprocessors
A multiprocessor system is an interconnection of two or more CPUs with
memory and input–output equipment. The term “processor” in multiprocessor
can mean either a central processing unit (CPU) or an input–output proces-
sor (IOP). However, a system with a single CPU and one or more IOPs is
usually not included in the definition of a multiprocessor system unless the
IOP has computational facilities comparable to a CPU. As it is most commonly
defined, a multiprocessor system implies the existence of multiple CPUs,
although usually there will be one or more IOPs as well. As mentioned in
Sec. 9-1, multiprocessors are classified as multiple instruction stream, multiple
data stream (MIMD) systems.

There are some similarities between multiprocessor and multicomputer
systems since both support concurrent operations. However, there exists an
important distinction between a system with multiple computers and a system
with multiple processors. Computers are interconnected with each other by
means of communication lines to form a computer network. The network con-
sists of several autonomous computers that may or may not communicate with
each other. A multiprocessor system is controlled by one operating system that
provides interaction between processors and all the components of the system
cooperate in the solution of a problem.

491

C H A P T E R T H I R T E E N

Multiprocessors

MIMD

Chapter13.qxd 2/2/2007 6:48 PM Page 491

EON
PreMedia

CONFIRMING PGS

Although some large-scale computers include two or more CPUs in their
overall system, it is the emergence of the microprocessor that has been the
major motivation for multiprocessor systems. The fact that microprocessors
take very little physical space and are very inexpensive brings about the
feasibility of interconnecting a large number of microprocessors into one com-
posite system. Very-large-scale integrated circuit technology has reduced the
cost of computer components to such a low level that the concept of applying
multiple processors to meet system performance requirements has become an
attractive design possibility.

Multiprocessing improves the reliability of the system so that a failure or
error in one part has a limited effect on the rest of the system. If a fault causes
one processor to fail, a second processor can be assigned to perform the
functions of the disabled processor. The system as a whole can continue to
function correctly with perhaps some loss in efficiency.

The benefit derived from a multiprocessor organization is an improved
system performance. The system derives its high performance from the fact
that computations can proceed in parallel in one of two ways.

1. Multiple independent jobs can be made to operate in parallel.
2. A single job can be partitioned into multiple parallel tasks.

An overall function can be partitioned into a number of tasks that
each processor can handle individually. System tasks may be allocated to
special-purpose processors whose design is optimized to perform certain types
of processing efficiently. An example is a computer system where one proces-
sor performs the computations for an industrial process control while oth-
ers monitor and control the various parameters, such as temperature and
flow rate. Another example is a computer where one processor performs
high-speed floating-point mathematical computations and another takes
care of routine data-processing tasks.

Multiprocessing can improve performance by decomposing a program
into parallel executable tasks. This can be achieved in one of two ways. The
user can explicitly declare that certain tasks of the program be executed in
parallel. This must be done prior to loading the program by specifying the par-
allel executable segments. Most multiprocessor manufacturers provide an
operating system with programming language constructs suitable for specify-
ing parallel processing. The other, more efficient way is to provide a compiler
with multiprocessor software that can automatically detect parallelism in
a user’s program. The compiler checks for data dependency in the program. If
a program depends on data generated in another part, the part yielding the
needed data must be executed first. However, two parts of a program that do
not use data generated by each can run concurrently. The parallelizing com-
piler checks the entire program to detect any possible data dependencies.
These that have no data dependency are then considered for concurrent
scheduling on different processors.

492 CHAPTER THIRTEEN Multiprocessors

microprocessor

VLSI

Chapter13.qxd 2/2/2007 6:48 PM Page 492

EON
PreMedia

CONFIRMING PGS

Multiprocessors are classified by the way their memory is organized. A
multiprocessor system with common shared memory is classified as a shared-
memory or tightly coupled multiprocessor. This does not preclude each processor
from having its own local memory. In fact, most commercial tightly coupled
multiprocessors provide a cache memory with each CPU. In addition, there is
a global common memory that all CPUs can access. Information can therefore
be shared among the CPUs by placing it in the common global memory.

An alternative model of microprocessor is the distributed-memory or loosely
coupled system. Each processor element in a loosely coupled system has its
own private local memory. The processors are tied together by a switching
scheme designed to route information from one processor to another through
a message-passing scheme. The processors relay program and data to other
processors in packets. A packet consists of an address, the data content, and
some error detection code. The packets are addressed to a specific processor
or taken by the first available processor, depending on the communication
system used. Loosely coupled systems are most efficient when the interaction
between tasks is minimal, whereas tightly coupled systems can tolerate a
higher degree of interaction between tasks.

13-2 Interconnection Structures
The components that form a multiprocessor system are CPUs, IOPs con-
nected to input–output devices, and a memory unit that may be partitioned
into a number of separate modules. The interconnection between the compo-
nents can have different physical configurations, depending on the number of
transfer paths that are available between the processors and memory in a
shared memory system or among the processing elements in a loosely coupled
system. There are several physical forms available for establishing an inter-
connection network. Some of these schemes are presented in this section:

1. Time-shared common bus
2. Multiport memory
3. Crossbar switch
4. Multistage switching network
5. Hypercube system

Time-Shared Common Bus
A common-bus multiprocessor system consists of a number of processors con-
nected through a common path to a memory unit. A time-shared common bus
for five processors is shown in Fig. 13-1. Only one processor can communicate
with the memory or another processor at any given time. Transfer operations

SECTION 13-2 Interconnection Structures 493

tightly coupled

loosely coupled

Chapter13.qxd 2/2/2007 6:48 PM Page 493

EON
PreMedia

CONFIRMING PGS

are conducted by the processor that is in control of the bus at the time. Any
other processor wishing to initiate a transfer must first determine the avail-
ability status of the bus, and only after the bus becomes available can the
processor address the destination unit to initiate the transfer. A command is
issued to inform the destination unit what operation is to be performed. The
receiving unit recognizes its address in the bus and responds to the control
signals from the sender, after which the transfer is initiated. The system may
exhibit transfer conflicts since one common bus is shared by all processors.
These conflicts must be resolved by incorporating a bus controller that estab-
lishes priorities among the requesting units.

A single common-bus system is restricted to one transfer at a time. This
means that when one processor is communicating with the memory, all other
processors are either busy with internal operations or must be idle waiting for
the bus. As a consequence, the total overall transfer rate within the system is
limited by the speed of the single path. The processors in the system can be
kept busy more often through the implementation of two or more independent
buses to permit multiple simultaneous bus transfers. However, this increases
the system cost and complexity.

A more economical implementation of a dual bus structure is depicted in
Fig. 13-2. Here we have a number of local buses each connected to its own local
memory and to one or more processors. Each local bus may be connected to
a CPU, an IOP, or any combination of processors. A system bus controller
links each local bus to a common system bus. The I/O devices connected to
the local IOP, as well as the local memory, are available to the local processor.
The memory connected to the common system bus is shared by all processors.
If an IOP is connected directly to the system bus, the I/O devices attached to
it may be made available to all processors. Only one processor can communicate
with the shared memory and other common resources through the system bus
at any given time. The other processors are kept busy communicating with
their local memory and I/O devices. Part of the local memory may be designed

494 CHAPTER THIRTEEN Multiprocessors

Figure 13-1 Time-shared common bus organization.

shared memory

Memory unit

CPU 1 CPU 2 CPU 3 IOP 1 IOP 2

Chapter13.qxd 2/2/2007 6:48 PM Page 494

EON
PreMedia

CONFIRMING PGS

as a cache memory attached to the CPU (see Sec. 12-6). In this way, the aver-
age access time of the local memory can be made to approach the cycle time
of the CPU to which it is attached.

Multiport Memory
A multiport memory system employs separate buses between each memory
module and each CPU. This is shown in Fig. 13-3 for four CPUs and four mem-
ory modules (MMs). Each processor bus is connected to each memory mod-
ule. A processor bus consists of the address, data, and control lines required to
communicate with memory. The memory module is said to have four ports
and each port accommodates one of the buses. The module must have internal
control logic to determine which port will have access to memory at any given
time. Memory access conflicts are resolved by assigning fixed priorities to
each memory port. The priority for memory access associated with each
processor may be established by the physical port position that its bus occupies
in each module. Thus CPU 1 will have priority over CPU 2, CPU 2 will have
priority over CPU 3, and CPU 4 will have the lowest priority.

The advantage of the multiport memory organization is the high transfer
rate that can be achieved because of the multiple paths between processors
and memory. The disadvantage is that it requires expensive memory control
logic and a large number of cables and connectors. As a consequence, this

SECTION 13-2 Interconnection Structures 495

Figure 13-2 System bus structure for multiprocessors.

System
bus

controller

Common
shared

memory
CPU

System bus

Local bus

Local bus Local bus

IOP Local
memory

System
bus

controller
CPU

System
bus

controller
CPUIOP Local

memory
Local

memory

Chapter13.qxd 2/2/2007 6:48 PM Page 495

EON
PreMedia

CONFIRMING PGS

interconnection structure is usually appropriate for systems with a small num-
ber of processors.

Crossbar Switch
The crossbar switch organization consists of a number of crosspoints that are
placed at intersections between processor buses and memory module paths.
Figure 13-4 shows a crossbar switch interconnection between four CPUs and
four memory modules. The small square in each crosspoint is a switch that
determines the path from a processor to a memory module. Each switch point
has control logic to set up the transfer path between a processor and memory.
It examines the address that is placed in the bus to determine whether its
particular module is being addressed. It also resolves multiple requests for
access to the same memory module on a predetermined priority basis.

Figure 13-5 shows the functional design of a crossbar switch connected to
one memory module. The circuit consists of multiplexers that select the data,

496 CHAPTER THIRTEEN Multiprocessors

Memory modules

MM 1

CPU 1

CPU 2

CPU 3

CPU 4

MM 2 MM 3 MM 4

Chapter13.qxd 2/2/2007 6:48 PM Page 496

EON
PreMedia

CONFIRMING PGS

Figure 13-4 Crossbar switch.

Figure 13-5 Block diagram of crossbar switch.

Memory modules

MM 1

CPU 1

CPU 2

CPU 3

CPU 4

MM 2 MM 3 MM 4

Memory
module

Data

Multiplexers
and

arbitration
logic

Data, address, and
control from CPU 1

Data, address, and
control from CPU 2

Data, address, and
control from CPU 3

Data, address, and
control from CPU 4

Address

Read/write

Memory
enable

497

Chapter13.qxd 2/2/2007 6:48 PM Page 497

EON
PreMedia

CONFIRMING PGS

address, and control from one CPU for communication with the memory mod-
ule. Priority levels are established by the arbitration logic to select one CPU
when two or more CPUs attempt to access the same memory. The multiplexers
are controlled with the binary code that is generated by a priority encoder
within the arbitration logic.

A crossbar switch organization supports simultaneous transfers from all
memory modules because there is a separate path associated with each mod-
ule. However, the hardware required to implement the switch can become
quite large and complex.

Multistage Switching Network
The basic component of a multistage network is a two-input, two-output
interchange switch. As shown in Fig. 13-6, the 2 � 2 switch has two inputs,
labeled A and B, and two outputs, labeled 0 and 1. There are control signals
(not shown) associated with the switch that establish the interconnection
between the input and output terminals. The switch has the capability of
connecting input A to either of the outputs. Terminal B of the switch behaves
in a similar fashion. The switch also has the capability to arbitrate between
conflicting requests. If inputs A and B both request the same output terminal,
only one of them will be connected; the other will be blocked.

Using the 2 � 2 switch as a building block, it is possible to build a
multistage network to control the communication between a number of sources
and destinations. To see how this is done, consider the binary tree shown in
Fig. 13-7. The two processors P1 and P2 are connected through switches to eight
memory modules marked in binary from 000 through 111. The path from a
source to a destination is determined from the binary bits of the destination

498 CHAPTER THIRTEEN Multiprocessors

interchange switch

Figure 13-6 Operation of a 2 � 2 interchange switch.

0A

B

A connected to 0

1

0A

B

A connected to 1

1

0A

B

B connected to 1

1

0A

B

B connected to 0

1

Chapter13.qxd 2/2/2007 6:48 PM Page 498

EON
PreMedia

CONFIRMING PGS

number. The first bit of the destination number determines the switch output
in the first level. The second bit specifies the output of the switch in the sec-
ond level, and the third bit specifies the output of the switch in the third level.
For example, to connect P1 to memory 101, it is necessary to form a path from
P1 to output 1 in the first-level switch, output 0 in the second-level switch, and
output 1 in the third-level switch. It is clear that either P1 or P 2 can be con-
nected to any one of the eight memories. Certain request patterns, however,
cannot be satisfied simultaneously. For example, if P1 is connected to one of
the destinations 000 through 011, P2 can be connected to only one of the
destinations 100 through 111.

Many different topologies have been proposed for multistage switching
networks to control processor–memory communication in a tightly coupled
multiprocessor system or to control the communication between the process-
ing elements in a loosely coupled system. One such topology is the omega
switching network shown in Fig. 13-8, In this configuration, there is exactly
one path from each source to any particular destination. Some request patterns,
however, cannot be connected simultaneously. For example, any two sources
cannot be connected simultaneously to destinations 000 and 001.

SECTION 13-2 Interconnection Structures 499

Figure 13-7 Binary tree with 2 � 2 switches.

omega network

0

1

0

1

0

1

0

1

0

1

0

1

0

1
P1

P2

111

110

101

100

011

010

001

000

Chapter13.qxd 2/2/2007 6:48 PM Page 499

EON
PreMedia

CONFIRMING PGS

A particular request is initiated in the switching network by the source,
which sends a 3-bit pattern representing the destination number. As the binary
pattern moves through the network, each level examines a different bit to
determine the 2 � 2 switch setting. Level 1 inspects the most significant bit,
level 2 inspects the middle bit, and level 3 inspects the least significant bit.
When the request arrives on either input of the 2 � 2 switch, it is routed to the
upper output if the specified bit is 0 or to the lower output if the bit is 1.

In a tightly coupled multiprocessor system, the source is a processor and
the destination is a memory module. The first pass through the network sets
up the path. Succeeding passes are used to transfer the address into memory
and then transfer the data in either direction, depending on whether the
request is a read or a write. In a loosely coupled multiprocessor system, both
the source and destination are processing elements. After the path is estab-
lished, the source processor transfers a message to the destination processor.

Hypercube Interconnection
The hypercube or binary n-cube multiprocessor structure is a loosely coupled
system composed of N � 2n processors interconnected in an n-dimensional
binary cube. Each processor forms a node of the cube. Although it is customary

500 CHAPTER THIRTEEN Multiprocessors

Figure 13-8 8 � 8 omega switching network.

000

001

010

011

100

101

110

1117

6

5

4

3

2

1

0

Chapter13.qxd 2/2/2007 6:48 PM Page 500

EON
PreMedia

CONFIRMING PGS

to refer to each node as having a processor, in effect it contains not only a
CPU but also local memory and I/O interface. Each processor has direct
communication paths to n other neighbor processors. These paths correspond
to the edges of the cube. There are 2n distinct n-bit binary addresses that can be
assigned to the processors. Each processor address differs from that of each of
its n neighbors by exactly one bit position.

Figure 13-9 shows the hypercube structure for n � 1, 2, and 3. A one-cube
structure has n � 1 and 2n � 2. It contains two processors interconnected by a
single path. A two-cube structure has n � 2 and 2n � 4. It contains four nodes
interconnected as a square. A three-cube structure has eight nodes intercon-
nected as a cube. An n-cube structure has 2n nodes with a processor residing
in each node. Each node is assigned a binary address in such a way that the
addresses of two neighbors differ in exactly one bit position. For example, the
three neighbors of the node with address 100 in a three-cube structure are 000,
110, and 101. Each of these binary numbers differs from address 100 by one
bit value.

Routing messages through an n-cube structure may take from one to n
links from a source node to a destination node. For example, in a three-cube
structure, node 000 can communicate directly with node 001. It must cross at
least two links to communicate with 011 (from 000 to 001 to 011 or from 000
to 010 to 011). It is necessary to go through at least three links to communicate
from node 000 to node 111. A routing procedure can be developed by com-
puting the exclusive-OR of the source node address with the destination node
address. The resulting binary value will have 1 bits corresponding to the axes
on which the two nodes differ. The message is then sent along any one of the
axes. For example, in a three-cube structure, a message at 010 going to 001
produces an exclusive-OR of the two addresses equal to 011. The message can
be sent along the second axis to 000 and then through the third axis to 001.

SECTION 13-2 Interconnection Structures 501

Figure 13-9 Hypercube structures for n � 1,2,3.

0 01

00

11 010
001

011 111

101
110

000101

One-cube Two-cube Three-cube

Chapter13.qxd 2/2/2007 6:48 PM Page 501

EON
PreMedia

CONFIRMING PGS

A representative of the hypercube architecture is the Intel iPSC com-
puter complex. It consists of 128 (n � 7) microcomputers connected through
communication channels. Each node consists of a CPU, a floating-point
processor, local memory, and serial communication interface units. The indi-
vidual nodes operate independently on data stored in local memory accord-
ing to resident programs. The data and programs to each node come through
a message-passing system from other nodes or from a cube manager.
Application programs are developed and compiled on the cube manager and
then downloaded to the individual nodes. Computations are distributed
through the system and executed concurrently.

13-3 Interprocessor Arbitration
Computer systems contain a number of buses at various levels to facilitate the
transfer of information between components. The CPU contains a number of
internal buses for transferring information between processor registers and
ALU. A memory bus consists of lines for transferring data, address, and
read/write information. An I/O bus is used to transfer information to and from
input and output devices. A bus that connects major components in a multi-
processor system, such as CPUs, IOPs, and memory, is called a system bus. The
physical circuits of a system bus are contained in a number of identical printed
circuit boards. Each board in the system belongs to a particular module. The
board consists of circuits connected in parallel through connectors. Each pin
of each circuit connector is connected by a wire to the corresponding pin of
all other connectors in other boards. Thus any board can be plugged into a
slot in the backplane that forms the system bus.

The processors in a shared memory multiprocessor system request access
to common memory or other common resources through the system bus. If no
other processor is currently utilizing the bus, the requesting processor may be
granted access immediately. However, the requesting processor must wait if
another processor is currently utilizing the system bus. Furthermore, other
processors may request the system bus at the same time. Arbitration must then
be performed to resolve this multiple contention for the shared resources. The
arbitration logic would be part of the system bus controller placed between the
local bus and the system bus as shown in Fig. 13-2.

System Bus
A typical system bus consists of approximately 100 signal lines. These lines are
divided into three functional groups: data, address, and control. In addition,
there are power distribution lines that supply power to the components. For
example, the IEEE standard 796 multibus system has 16 data lines, 24 address
lines, 26 control lines, and 20 power lines, for a total of 86 lines.

502 CHAPTER THIRTEEN Multiprocessors

system bus

Chapter13.qxd 2/2/2007 6:48 PM Page 502

EON
PreMedia

CONFIRMING PGS

The data lines provide a path for the transfer of data between processors
and common memory. The number of data lines is usually a multiple of 8,
with 16 and 32 being most common. The address lines are used to identify a
memory address or any other source or destination, such as input or output
ports. The number of address lines determines the maximum possible mem-
ory capacity in the system. For example, an address of 24 lines can access up
to 224 (16 mega) words of memory. The data and address lines are terminated
with three-state buffers (see Fig. 4-5). The address buffers are unidirectional
from processor to memory. The data lines are bidirectional (see Fig. 12-3),
allowing the transfer of data in either direction.

Data transfers over the system bus may be synchronous or asynchro-
nous. In a synchronous bus, each data item is transferred during a time slice
known in advance to both source and destination units. Synchronization is
achieved by driving both units from a common clock source. An alternative
procedure is to have separate clocks of approximately the same frequency in
each unit. Synchronization signals are transmitted periodically in order to
keep all clocks in the system in step with each other. In an asynchronous bus,
each data item being transferred is accompanied by handshaking control sig-
nals (see Fig. 11-9) to indicate when the data are transferred from the source
and received by the destination.

The control lines provide signals for controlling the information transfer
between units. Timing signals indicate the validity of data and address infor-
mation. Command signals specify operations to be performed. Typical control
lines include transfer signals such as memory read and write, acknowledge of
a transfer, interrupt requests, bus control signals such as bus request and bus
grant, and signals for arbitration procedures.

Table 13-1 lists the 86 lines that are available in the IEEE standard
796 multibus. It includes 16 data lines and 24 address lines. All signals in
the multibus are active or enabled in the low-level state. The data transfer con-
trol signals include memory read and write as well as I/O read and write.
Consequently, the address lines can be used to address separate memory and
I/O spaces. The memory or I/O responds with a transfer acknowledge signal
when the transfer is completed. Each processor attached to the multibus has
up to eight interrupt request outputs and one interrupt acknowledge input line.
They are usually applied to a priority interrupt controller similar to the one
described in Fig. 11-21. The miscellaneous control signals provide timing and
initialization capabilities. In particular, the bus lock signal is essential for mul-
tiprocessor applications. This processor-activated signal serves to prevent
other processors from getting hold of the bus while executing a test and set
instruction. This instruction is needed for proper processor synchronization
(see Sec. 13-4).

The six bus arbitration signals are used for interprocessor arbitration.
These signals will be explained later after a discussion of the serial and parallel
arbitration procedures.

SECTION 13-3 Interprocessor Arbitration 503

synchronous bus

asynchronous bus

Chapter13.qxd 2/2/2007 6:48 PM Page 503

EON
PreMedia

CONFIRMING PGS

Serial Arbitration Procedure
Arbitration procedures service all processor requests on the basis of established
priorities. A hardware bus priority resolving technique can be established by
means of a serial or parallel connection of the units requesting control of the
system bus. The serial priority resolving technique is obtained from a daisy-
chain connection of bus arbitration circuits similar to the priority interrupt
logic presented in Sec. 11-5. The processors connected to the system bus are
assigned priority according to their position along the priority control line.
The device closest to the priority line is assigned the highest priority. When
multiple devices concurrently request the use of the bus, the device with the
highest priority is granted access to it.

Figure 13-10 shows the daisy-chain connection of four arbiters. It is
assumed that each processor has its own bus arbiter logic with priority-in and
priority-out lines. The priority out (PO) of each arbiter is connected to the

504 CHAPTER THIRTEEN Multiprocessors

TABLE 13-1 IEEE Standard 796 Multibus Signals

Signal name

Data and address
Data lines (16 lines) DATA0–DATA15
Address lines (24 lines) ADRS0–ADRS23

Data transfer
Memory read MRDC
Memory write MWTC
IO read IORC
IO write IOWC
Transfer acknowledge TACK

Interrupt control
Interrupt request (8 lines) INT0–INT7
Interrupt acknowledge INTA

Miscellaneous control
Master clock CCLK
System initialization INIT
Byte high enable BHEN
Memory inhibit (2 lines) INH1–INH2
Bus lock LOCK

Bus arbitration
Bus request BREQ
Common bus request CBRQ
Bus busy BUSY
Bus clock BCLK
Bus priority in BPRN
Bus priority out BPRO

Power and ground (20 lines)

Reprinted with permission of the IEEE.

Chapter13.qxd 2/2/2007 6:48 PM Page 504

EON
PreMedia

CONFIRMING PGS

priority in (PI) of the next-lower-priority arbiter. The PI of the highest-priority
unit is maintained at a logic 1 value. The highest-priority unit in the system
will always receive access to the system bus when it requests it. The PO out-
put for a particular arbiter is equal to 1 if its PI input is equal to 1 and the
processor associated with the arbiter logic is not requesting control of the bus.
This is the way that priority is passed to the next unit in the chain. If the
processor requests control of the bus and the corresponding arbiter finds its PI
input equal to 1, it sets its PO output to 0. Lower-priority arbiters receive a 0
in PI and generate a 0 in PO. Thus the processor whose arbiter has a PI � 1
and PO � 0 is the one that is given control of the system bus.

A processor may be in the middle of a bus operation when a higher-
priority processor requests the bus. The lower-priority processor must com-
plete its bus operation before it relinquishes control of the bus. The bus busy
line shown in Fig. 13-10 provides a mechanism for an orderly transfer of con-
trol. The busy line comes from open-collector circuits in each unit and pro-
vides a wired-OR logic connection. When an arbiter receives control of the
bus (because its PI � 1 and PO � 0) it examines the busy line. If the line is
inactive, it means that no other processor is using the bus. The arbiter acti-
vates the busy line and its processor takes control of the bus. However, if the
arbiter finds the busy line active, it means that another processor is currently
using the bus. The arbiter keeps examining the busy line while the lower-
priority processor that lost control of the bus completes its operation. When
the bus busy line returns to its inactive state, the higher-priority arbiter
enables the busy line, and its corresponding processor can then conduct the
required bus transfers.

Parallel Arbitration Logic
The parallel bus arbitration technique uses an external priority encoder and
a decoder as shown in Fig. 13-11. Each bus arbiter in the parallel scheme has
a bus request output line and a bus acknowledge input line. Each arbiter
enables the request line when its processor is requesting access to the system

SECTION 13-3 Interprocessor Arbitration 505

Figure 13-10 Serial (daisy-chain) arbitration.

1

Highest
priority

Bus

PI
arbiter 1

PO

Bus

PI
arbiter 2

PO

Bus

PI
arbiter 3

PO

Bus

Lowest
priority

To next
arbiter

Bus busy line

PI
arbiter 4

PO

Chapter13.qxd 2/2/2007 6:48 PM Page 505

EON
PreMedia

CONFIRMING PGS

bus. The processor takes control of the bus if its acknowledge input line is
enabled. The bus busy line provides an orderly transfer of control, as in the
daisy-chaining case.

Figure 13-11 shows the request lines from four arbiters going into a
4 � 2 priority encoder. The output of the encoder generates a 2-bit code
which represents the highest-priority unit among those requesting the bus.
The truth table of the priority encoder can be found in Table 11-2 (Sec. 11-5).
The 2-bit code from the encoder output drives a 2 � 4 decoder which
enables the proper acknowledge line to grant bus access to the highest-
priority unit.

We can now explain the function of the bus arbitration signals listed in
Table 13-1. The bus priority-in BPRN and bus priority-out BPRO are used
for a daisy-chain connection of bus arbitration circuits. The bus busy signal
BUSY is an open-collector output used to instruct all arbiters when the bus
is busy conducting a transfer. The common bus request CBRQ is also an
open-collector output that serves to instruct the arbiter if there are any other
arbiters of lower-priority requesting use of the system bus. The signals used
to construct a parallel arbitration procedure are bus request BREQ and pri-
ority-in BPRN, corresponding to the request and acknowledge signals in Fig.
13-11. The bus clock BCLK is used to synchronize all bus transactions.

506 CHAPTER THIRTEEN Multiprocessors

Figure 13-11 Parallel arbitration.

Bus
arbiter 1

Ack Req

Bus
arbiter 2

Ack Req

4 � 2
Priority encoder

Bus busy line

2 � 4
Decoder

Bus
arbiter 3

Ack Req

Bus
arbiter 4

Ack Req

Chapter13.qxd 2/2/2007 6:48 PM Page 506

EON
PreMedia

CONFIRMING PGS

Dynamic Arbitration Algorithms
The two bus arbitration procedures just described use a static priority algorithm
since the priority of each device is fixed by the way it is connected to the bus.
In contrast, a dynamic priority algorithm gives the system the capability for
changing the priority of the devices while the system is in operation. We now
discuss a few arbitration procedures that use dynamic priority algorithms.

The time slice algorithm allocates a fixed-length time slice of bus time that
is offered sequentially to each processor, in round-robin fashion. The service
given to each system component with this scheme is independent of its loca-
tion along the bus. No preference is given to any particular device since each
is allotted the same amount of time to communicate with the bus.

In a bus system that uses polling, the bus grant signal is replaced by a set
of lines called poll lines which are connected to all units. These lines are used
by the bus controller to define an address for each device connected to the
bus. The bus controller sequences through the addresses in a prescribed man-
ner. When a processor that requires access recognizes its address, it activates
the bus busy line and then accesses the bus. After a number of bus cycles, the
polling process continues by choosing a different processor. The polling
sequence is normally programmable, and as a result, the selection priority can
be altered under program control.

The least recently used (LRU) algorithm gives the highest priority to the
requesting device that has not used the bus for the longest interval. The priorities
are adjusted after a number of bus cycles according to the LRU algorithm. With
this procedure, no processor is favored over any other since the priorities are
dynamically changed to give every device an opportunity to access the bus.

In the first-come, first-serve scheme, requests are served in the order
received. To implement this algorithm, the bus controller establishes a queue
arranged according to the time that the bus requests arrive. Each processor
must wait for its turn to use the bus on a first-in, first-out (FIFO) basis.

The rotating daisy-chain procedure is a dynamic extension of the daisy-chain
algorithm. In this scheme there is no central bus controller, and the priority line
is connected from the priority-out of the last device back to the priority-in of the
first device in a closed loop. This is similar to the connections shown in Fig. 13-
10 except that the PO output of arbiter 4 is connected to the PI input of arbiter 1.
Whichever device has access to the bus serves as a bus controller for the follow-
ing arbitration. Each arbiter priority for a given bus cycle is determined by its
position along the bus priority line from the arbiter whose processor is currently
controlling the bus. Once an arbiter releases the bus, it has the lowest priority.

13-4 Interprocessor Communication
and Synchronization
The various processors in a multiprocessor system must be provided with a
facility for communicating with each other. A communication path can be
established through common input–output channels. In a shared memory

SECTION 13-4 Interprocessor Communication and Synchronization 507

time slice

polling

LRU

FIFO
rotating
daisy-chain

Chapter13.qxd 2/2/2007 6:48 PM Page 507

EON
PreMedia

CONFIRMING PGS

multiprocessor system, the most common procedure is to set aside a portion
of memory that is accessible to all processors. The primary use of the com-
mon memory is to act as a message center similar to a mailbox, where each
processor can leave messages for other processors and pick up messages
intended for it.

The sending processor structures a request, a message, or a procedure,
and places it in the memory mailbox. Status bits residing in common memory
are generally used to indicate the condition of the mailbox, whether it has
meaningful information, and for which processor it is intended. The receiving
processor can check the mailbox periodically to determine if there are valid
messages for it. The response time of this procedure can be time consuming
since a processor will recognize a request only when polling messages. A more
efficient procedure is for the sending processor to alert the receiving processor
directly by means of an interrupt signal. This can be accomplished through a
software-initiated interprocessor interrupt by means of an instruction in the
program of one processor which when executed produces an external inter-
rupt condition in a second processor. This alerts the interrupted processor of
the fact that a new message was inserted by the interrupting processor.

In addition to shared memory, a multiprocessor system may have other
shared resources. For example, a magnetic disk storage unit connected to an
IOP may be available to all CPUs. This provides a facility for sharing of sys-
tem programs stored in the disk. A communication path between two CPUs
can be established through a link between two IOPs associated with two dif-
ferent CPUs. This type of link allows each CPU to treat the other as an I/O
device so that messages can be transferred through the I/O path.

To prevent conflicting use of shared resources by several processors there
must be a provision for assigning resources to processors. This task is given to
the operating system. There are three organizations that have been used in
the design of operating system for multiprocessors: master-slave configuration,
separate operating system, and distributed operating system.

In a master-slave mode, one processor, designated the master, always
executes the operating system functions. The remaining processors, denoted
as slaves, do not perform operating system functions. If a slave processor
needs an operating system service, it must request it by interrupting the mas-
ter and waiting until the current program can be interrupted.

In the separate operating system organization, each processor can exe-
cute the operating system routines it needs. This organization is more suitable
for loosely coupled systems where every processor may have its own copy of
the entire operating system.

In the distributed operating system organization, the operating system
routines are distributed among the available processors. However, each par-
ticular operating system function is assigned to only one processor at a time.
This type of organization is also referred to as a floating operating system since
the routines float from one processor to another and the execution of the rou-
tines may be assigned to different processors at different times.

508 CHAPTER THIRTEEN Multiprocessors

Chapter13.qxd 2/2/2007 6:48 PM Page 508

EON
PreMedia

CONFIRMING PGS

In a loosely coupled multiprocessor system the memory is distributed
among the processors and there is no shared memory for passing information.
The communication between processors is by means of message passing
through I/O channels. The communication is initiated by one processor call-
ing a procedure that resides in the memory of the processor with which it
wishes to communicate. When the sending processor and receiving processor
name each other as a source and destination, a channel of communication is
established. A message is then sent with a header and various data objects used
to communicate between nodes. There may be a number of possible paths
available to send the message between any two nodes. The operating system in
each node contains routing information indicating the alternative paths that can
be used to send a message to other nodes. The communication efficiency of the
interprocessor network depends on the communication routing protocol,
processor speed, data link speed, and the topology of the network.

Interprocessor Synchronization
The instruction set of a multiprocessor contains basic instructions that are used to
implement communication and synchronization between cooperating processes.
Communication refers to the exchange of data between different processes. For
example, parameters passed to a procedure in a different processor constitute
interprocessor communication. Synchronization refers to the special case where
the data used to communicate between processors is control information.
Synchronization is needed to enforce the correct sequence of processes and to
ensure mutually exclusive access to shared writable data.

Multiprocessor systems usually include various mechanisms to deal with
the synchronization of resources. Low-level primitives are implemented directly
by the hardware. These primitives are the basic mechanisms that enforce
mutual exclusion for more complex mechanisms implemented in software.
A number of hardware mechanisms for mutual exclusion have been developed.
One of the most popular methods is through the use of a binary semaphore.

Mutual Exclusion with a Semaphore
A properly functioning multiprocessor system must provide a mechanism
that will guarantee orderly access to shared memory and other shared
resources. This is necessary to protect data from being changed simultane-
ously by two or more processors. This mechanism has been termed mutual
exclusion. Mutual exclusion must be provided in a multiprocessor system to
enable one processor to exclude or lock out access to a shared resource by
other processors when it is in a critical section. A critical section is a program
sequence that, once begun, must complete execution before another proces-
sor accesses the same shared resource.

A binary variable called a semaphore is often used to indicate whether or not
a processor is executing a critical section. A semaphore is a software controlled

SECTION 13-4 Interprocessor Communication and Synchronization 509

critical section

Chapter13.qxd 2/2/2007 6:48 PM Page 509

EON
PreMedia

CONFIRMING PGS

flag that is stored in a memory location that all processors can access. When the
semaphore is equal to 1, it means that a processor is executing a critical program,
so that the shared memory is not available to other processors. When the sem-
aphore is equal to 0, the shared memory is available to any requesting proces-
sor. Processors that share the same memory segment agree by convention not to
use the memory segment unless the semaphore is equal to 0, indicating that
memory is available. They also agree to set the semaphore to 1 when they are
executing a critical section and to clear it to 0 when they are finished.

Testing and setting the semaphore is itself a critical operation and must
be performed as a single indivisible operation. If it is not, two or more proces-
sors may test the semaphore simultaneously and then each set it, allowing
them to enter a critical section at the same time. This action would allow
simultaneous execution of critical section, which can result in erroneous initial-
ization of control parameters and a loss of essential information.

A semaphore can be initialized by means of a test and set instruction in
conjunction with a hardware lock mechanism. A hardware lock is a processor-
generated signal that serves to prevent other processors from using the system
bus as long as the signal is active. The test-and-set instruction tests and sets a
semaphore and activates the lock mechanism during the time that the instruc-
tion is being executed. This prevents other processors from changing the sem-
aphore between the time that the processor is testing it and the time that it is
setting it. Assume that the semaphore is a bit in the least significant position of
a memory word whose address is symbolized by SEM. Let the mnemonic
TSL designate the “test and set while locked” operation. The instruction

TSL SEM

will be executed in two memory cycles (the first to read and the second to
write) without interference as follows:

R ← M [SEM] Test semaphore
M [SEM] ← 1 Set semaphore

The semaphore is tested by transferring its value to a processor register R and
then it is set to 1. The value in R determines what to do next. If the processor
finds that R � 1, it knows that the semaphore was originally set. (The fact that
it is set again does not change the semaphore value.) That means that another
processor is executing a critical section, so the processor that checked the sem-
aphore does not access the shared memory. If R � 0, it means that the com-
mon memory (or the shared resource that the semaphore represents) is
available. The semaphore is set to 1 to prevent other processors from access-
ing memory. The processor can now execute the critical section. The last
instruction in the program must clear location SEM to zero to release the
shared resource to other processors.

510 CHAPTER THIRTEEN Multiprocessors

hardware lock

Chapter13.qxd 2/2/2007 6:48 PM Page 510

EON
PreMedia

CONFIRMING PGS

Note that the lock signal must be active during the execution of the test-
and-set instruction. It does not have to be active once the semaphore is set.
Thus the lock mechanism prevents other processors from accessing memory
while the semaphore is being set. The semaphore itself, when set, prevents
other processors from accessing shared memory while one processor is exe-
cuting a critical section.

SECTION 13-4 Interprocessor Communication and Synchronization 511

13-1. Discuss the difference between tightly coupled multiprocessors and loosely
coupled multiprocessors from the viewpoint of hardware organization and
programming techniques.

13-2. What is the purpose of the system bus controller shown in Fig. 13-2? Explain
how the system can be designed to distinguish between references to local
memory and references to common shared memory.

13-3. How many switch points are there in a crossbar switch network that con-
nects p processors to m memory modules?

13-4. The 8 � 8 omega switching network of Fig. 13-8 has three stages with four
switches in each stage, for a total of 12 switches. How many stages and
switches per stage are needed in an n � n omega switching network?

13-5. Suppose that the wire breaks between the switch in the first row, second
column and the switch in the second row, third column in the omega switch-
ing network of Fig. 13-8. What paths will be disconnected?

13-6. Construct a diagram for a 4 � 4 omega switching netwoik. Show the switch
setting required to connect input 3 to output 1.

13-7. Three types of switches are used to design a multistage interconnection net-
work: an interchange switch with two inputs and two outputs as in Fig. 13-6,
an arbitration switch with two inputs and one output, and a distribution
switch with one input and two outputs.
a. Show how the arbitration and distribution switches operate.
b. Using arbitration and interchange switches, construct an 8 � 4 network

with a unique path between any source and any destination.
c. Using distribution and interchange switches, construct a 4 � 8 network

with a unique path between any source and any destination.
13-8. Draw a diagram showing the structure of a four-dimensional hypercube net-

work. List all the paths available from node 7 to node 9 that use the mini-
mum number of intermediate nodes.

13-9. Draw a logic diagram using gates and flip-flops showing the circuit of one
bus arbiter stage in the daisy-chain arbitration scheme of Fig. 13-10.

13-10. The bus controlled by the parallel arbitration logic shown in Fig. 13-11 is ini-
tially idle. Devices 2 and 3 then request the bus at the same time. Specify
the input and output binary values in the encoder and decoder and deter-
mine which bus arbiter is acknowledged.

PROBLEMS

Chapter13.qxd 2/2/2007 6:48 PM Page 511

EON
PreMedia

CONFIRMING PGS

13-11. Show how the arbitration logic of Fig. 13-10 can be modified to provide a
rotating daisy-chain arbitration procedure. Explain how the priority is deter-
mined once the bus line is disabled.

13-12. Consider a bus topology in which two processors communicate through a
buffer in shared memory. When one processor wishes to communicate with
the other processor it puts the information in the memory buffer and sets a
flag. Periodically, the other processor checks the flags to determine if it has
information to receive. What can be done to ensure proper synchronization
and to minimize the time between sending and receiving the information?

13-13. Describe the following terminology associated with multiprocessors. (a) mutual
exclusion; (b) critical section; (c) hardware lock; (d) semaphore; (e) test-and-
set instruction.

512 CHAPTER THIRTEEN Multiprocessors

REFERENCES

1. Dasgupta, S., Computer Architecture: A Modern Synthesis, Vol. 2. New York: John
Wiley, 1989.

2. DeCegama, A. L., Parallel Processing Architecture and VLSI Hardware. Englewood
Cliffs, N J: Prentice Hall, 1989.

3. Dubois, M., C. Scheurich, and F. A. Briggs, “Synchronization, Coherence, and
Event Ordering in Multiprocessors.” IEEE Computer, Vol. 21, No. 2 (February
1988), pp. 9–21.

4. Gibson, G. A., Computer Systems Concepts and Design. Englewood Cliffs, NJ: Prentice
Hall, 1991.

5. Gorsline, G. W., Computer Organization: Hardware/Software, 2nd ed. Englewood
Cliffs, NJ: Prentice Hall, 1986.

6. Hays, J. F., Computer Architecture and Organization, 2nd ed. New York: McGraw-Hill,
1988.

7. Hwang, K., and F. A. Briggs, Computer Architecture and Parallel Processing. New York:
McGraw-Hill, 1984.

8. Kain, R., Computer Architecture: Software and Hardware, Vol. 2. Englewood Cliffs,
NJ: Prentice Hall, 1989.

9. Langholz, G., J. Francioni, and A. Kandel, Elements of Computer Organization.
Englewood Cliffs, NJ: Prentice Hall, 1989.

10. Stenstrom, P., “A Survey of Cache Coherence Schemes for Multiprocessors.”
IEEE Computer, Vol. 23, No. 6 (June 1990), pp. 12–24.

11. Stone, H. S., High-Performance Computer Architecture. 2nd ed. Reading, MA:
Addison-Wesley, 1990.

12. Tabak, D., Multiprocessors. Englewood Cliffs, NJ: Prentice Hall, 1990.

Chapter13.qxd 2/2/2007 6:48 PM Page 512

EON
PreMedia

CONFIRMING PGS

513

Index

A
AC, 128
Access time, 465
Accumulator, 128
Accumulator register, 130–32

design of, 166–67
Addend, 340
Adder, 103–4
Adder and logic circuit, 132, 168
Adder–subtractor, 104–5
Addition algorithms:

decimal numbers, 367–70, 373
floating–point, 360–62
signed–magnitude, 337–40
signed–2’s complement, 79, 340–42

Add microoperation, 102–4
Add–overflow, 338
Address, 60, 133
Address bus, 419–21
Address field, 228
Addressing modes, 262

autoincrement, 264
base register, 266
direct, 128–29, 265
immediate, 128, 264
implied, 263
indexed, 265–66
indirect, 128–29, 265
register, 264
register indirect, 264
relative, 265

Address mapping, 474
Address register, 130–32
Address sequencing, 218
Address space, 472
Address symbol table, 185
Adjacent squares, 12
Algorithm, 336
Alphanumeric code, 73, 86, 385
ALU, 116–17, 243–47
AND, 4
AND gate, 5

AND microoperation, 110–11
special symbol, 109

AR (see Address register)
Arbitration, 502
Arbitration algorithms, 507
Architecture, 3
Arithmetic algorithm, 336
Arithmetic circuit, 106–8
Arithmetic instructions, 271–72
Arithmetic logic unit, 116, 246–47
Arithmetic microoperations, 102–3
Arithmetic pipeline, 309–12
Arithmetic processor, 335
Arithmetic shift, 114–15, 274, 348

overflow, 115
Array multiplier, 348–50
Array processor, 328

attached, 328–29
SIMD, 329–30

ASCII, 74–75, 186, 385–87
Assembler, 184, 187–92
Assembly language, 181–83
Associative memory, 458

hardware organization, 459–62
write–back, 471
write–through, 471

Associative mapping, 466
Asynchronous bus, 503
Asynchronous communication, 400–402
Asynchronous transfer, 393, 398
Attached array processor, 328–29
Autodecrement, 264
Autoincrement, 264
Auxiliary memory, 447, 454–58

B
Base of a number, 68
Base register, 266
Basic computer, 125

common bus, 131–33
control, 137–41

Index.qxd 5/22/2007 12:31 PM Page 513

EON
PreMedia

CONFIRMING PGS

514 Index

Basic computer (cont.)
design of, 159–69
flowchart, 160
input–output, 152–55
instruction cycle, 141, 144, 160
instructions, 134–36, 176–77
interrupt, 155–58
phases, 141
registers, 130, 159
tabular summary, 161

Baud rate, 400
BCD, 72–73, 81–82
BCD adder, 367–70
BCD subtractor, 370–71
Berkeley RISC I, 290–93
Biased exponent, 358
Bidirectional shift register, 53–56
Binary, 1
Binary adder, 103–4
Binary–coded decimal, 73, 85
Binary codes, 72, 84

alphanumeric, 73
ASCII, 74–75
BCD, 72–73
error detection, 87
excess–3, 85–86
Gray, 84

Binary counter, 56–58
design of, 32–36
with parallel load, 58–59

Binary incrementer, 105–6
Binary n–cube, 500
Binary numbers, 2, 68
Binary parallel adder, 103–45
Binary point, 77
Binary signal, 4
Binary tree, 499
Binary variable, 7, 215
Bit, 1
Bit–clear, 272
Bit complement, 272
Bit manipulation instructions, 272–74
Bit–oriented protocol, 439–41
Bit–set, 273
Block, 474
Block diagram, 18
Block transfer, 433
Boolean algebra, 7–11
Boolean expression, 8
Boolean function, 7
Booth algorithm, 345–48
Bootstrap loader, 500
Branch, 149, 277
Branch conditions, 278
Branch instructions, 275–78, 316–17
Branch logic, 219
Branch target buffer, 317
Buffer gate, 5, 100
Burst transfer, 418
Bus, 97–98, 502

of basic computer, 131–33
construction of, 98–101
input–output, 388
memory, 455

Bus arbitration, 504–8
Bus grant, 418
Bus organization, 244–46
Bus request, 418
Bus selection, 99
Bus transfer, 99
Byte, 60

C
Cache coherence, 512
Cache memory, 448, 464–71
Call subroutine, 202
CAM, 458
CAR (see Control address register)
Carry, 19, 76
Carry status bit, 276
Central processing unit, 243
Channel, 425
Character code, 73
Character manipulation, 206
Character–oriented protocol, 434
Characteristic table, 23–25
Chip, 41, 451
Chip select, 451
CISC, 284
Circular shift, 114
Clear, 23, 113
Clock, 22, 26, 96
Clock cycle, 139, 307
Clocked sequential circuit, 22
CMOS, 43
Combinational circuit, 18

analysis, 19
design, 19

Combinational circuit shifter, 116
Command, 389, 423
Comment field, 181
Common bus, 97–98, 131–33, 244–46
Communication control characters, 434
Compiler, 192
Compiler support, 318
Complement, 10, 74–76

subtraction with, 76
Complementer, 338–39
Complex instruction set computer, 284–86
Computer architecture, 3
Computer arithmetic, 335
Computer design, 3, 159–69
Computer hardware, 1
Computer instruction cycle, 141
Computer instructions, 134–36, 177
Computer network, 491
Computer organization, 3
Computer registers, 130

Index.qxd 5/22/2007 12:31 PM Page 514

EON
PreMedia

CONFIRMING PGS

Index 515

Computer software, 2, 175
Condition code, 276
Conditional branch, 219, 277–78
Content addressable memory, 458
Control address register, 217, 219
Control command, 389
Control design, 162–66, 233–34
Control function, 96
Control logic gates, 162
Control memory, 215–16, 231
Control signal, 138–40
Control unit, 137–41, 233
Control word, 215, 245–47
Counter, 56–58

design of, 32–36
CPU, 3, 243
CRC, 433
Critical section, 510
Crossbar switch, 496–98
Cycle stealing, 418
Cyclic redundancy check, 433

D
Daisy–chain, 410, 504–5
Data bus, 419–21
Data communication, 431
Data communication protocol, 433

bit–oriented, 439–41
character–oriented, 434–35
example, 435–38
message format, 435, 439

Data dependency, 315–16
Data link, 433
Data manipulation instructions, 270–74
Data register, 130–32
Data representation, 67
Data selector, 49
Data set, 432
Data stream, 303
Data transfer instructions, 269–70
Data transparency, 438
Data types, 67, 271
Decimal adder, 367–70
Decimal arithmetic, 371–78

addition and subtraction, 373
division, 376–78
multiplication, 373–75

Decimal arithmetic unit, 365–71
Decimal codes, 85
Decimal numbers, 68, 81
Decimal representation, 81
Decimal subtraction, 370–71
Decode phase, 141, 228
Decoder, 43
Decrement, 108
Delayed branch, 317, 320–21
Delayed load, 316, 319–20
DeMorgan theorem, 8–10

Descriptor, 484
Design of basic computer, 159–69
Device, 384
D flip–flop, 23
Digital, 1
Digital computer, 1
Digital integrated circuits, 41
Digital logic families, 42
Digital signal, 4
Digital system, 1
Direct address, 128–29, 265
Direct mapping, 467
Direct memory access, 417–22

controller, 418–20
transfer, 420–22

Disk, 385, 456
Distributed memory, 493
Distributed switch, 515
Divide overflow, 353
Dividend, 351
Dividend alignment, 364
Division algorithms:

comparison method, 355
decimal numbers, 376–78
floating–point, 364–65
non–restoring, 355–56
restoring method, 355
signed–magnitude, 351–55

Divisor, 351
DLE character, 438
DMA (see Direct memory access)
Don’t–care conditions, 16
Double–precision, 198
DR (see Data register)
Drum, 456
Dual–bus, 494–95
Dynamic arbitration, 507
Dynamic input, 22–23
Dynamic microprogramming, 216
Dynamic relocation, 478

E
EBCDIC, 87
ECL, 43
Edge triggered flip–flop, 25
EEPROM, 63
Effective address, 128, 264
Emitter–coupled logic, 43
Enable input, 44
Encoder, 47
End carry, 76
EPROM, 63
Equivalence, 5
Error detection code, 87
Error diagnostics, 190
Excess–3 code, 85–86
Excitation table, 27, 33
Exclusive–NOR, 5

Index.qxd 5/22/2007 12:31 PM Page 515

EON
PreMedia

CONFIRMING PGS

516 Index

Exclusive–OR, 6, 111
Execute phase, 141, 230
Exponent, 83, 356
External interrupt, 283

F
FA (see Full–adder)
Fetch phase, 141–43, 158, 228
FIFO, 402, 478
FIFO buffer, 402–4, 507
First–in first–out, 402–4
Fixed–point, 77

binary representation, 79–80
decimal representation, 81–82

Flag, 154, 439
Flag bits, 276
Flip–flop, 22–28

asynchronous clear, 26
edge–triggered, 25
excitation table, 27
IC, 26
input function, 28
master–slave, 26
types of, 22–25

Floating–point, 83, 356–59
arithmetic operations, 360–65
normalization, 83, 357

Floating–point pipeline, 310–12
Floppy disk, 457
Flops, 327
Flowchart for basic computer, 160
Fortran, 180
Full–adder, 20–22, 104
Full–duplex, 433

G
Gates, 4–6
General register organization, 244–49
Graphic symbols, 23
Gray code, 84

H
Half–adder, 19
Half–duplex, 433
Handshaking, 393, 395–98
Hardware, 2, 175
Hardware algorithm, 336
Hardware interlock, 314
Hardware lock, 510
Hardwired control, 138, 218
HDLC, 439
Hexadecimal code, 136, 179
Hexadecimal numbers, 68–70

binary coded, 71
conversion to binary, 70

High–impedance, 100
Hit ratio, 465
Hold time, 26
Hypercube, 500–502

I
IBM channel, 425–28
IC (see Integrated circuit)
Immediate mode, 128, 264
Implied mode, 263
Increment, 58, 103, 108
Incrementer, 105–6
Index addressing, 265–66
Indirect address, 128–29, 134, 265
Infix notation, 254
Inner product, 324
Input carry, 106
Input equation, 28
Input flag, 154
Input logic, 235–37
Input–output, 152–55, 383

bus, 388, 423
devices, 383–85
instructions, 154
interface, 387–89, 391–93
programming, 205
transfer, 393–400

Input–output processor, 422–24
Instruction code, 125, 134
Instruction cycle, 141, 312–13
Instruction format, 257, 324
Instruction register, 130
Instruction pipeline, 312–17
Instruction set completeness, 136–37
Instruction stream, 303
Instructions, 135, 177
Integrated circuit, 41–43
Intel–8089 IOP, 429
Interchange switch, 498
Interconnection of processors, 493–502
Interface, 387, 391
Interleaved memory, 326
Internal interrupt, 283
Interprocessor arbitration, 502
Interprocessor communication, 508
Interprocessor synchronization, 509
Interregister transfer, 95
Interrupt, 155–58, 283, 409–14

priority, 409
types of, 283–84
vectored, 408

Interrupt acknowledge, 412
Interrupt cycle, 155–58, 414–15
Interrupt initiated I/O, 408
Interrupt program, 207–10
Interrupt register, 413
Interrupt request, 419
Inverter gate, 5
IR (see Instruction register)

Index.qxd 5/22/2007 12:31 PM Page 516

EON
PreMedia

CONFIRMING PGS

I/O, 383
I/O bus, 423
I/O instructions, 154
I/O interface, 387–89
I/O port, 391
I/O software, 408, 415
IOP (see Input–output processor)
Isolated I/O, 390

J
JK flip–flop, 24
Jump, 227, 275

K
Karnaugh map, 11
Keyboard, 384

L
Label, 181, 227
Large–scale integration, 42
Last–in first–out, 249
LD (see Load control)
Least recently used, 478
LIFO, 249
Load control, 52, 131
Load input, 131–33
Local bus, 494–95
Locality of reference, 464
Location counter, 187
Lock mechanism, 510
Logic circuit, 111
Logic circuit families, 42
Logic diagram, 7
Logic gates, 4
Logic microoperations, 108–10

hardware implementation, 111
list of, 109–10

Logic operations, 199
Logical address, 479
Logical instructions, 272–74
Logical shift, 114, 274
Loosely coupled multiprocessors, 493
LRC, 433
LRU, 478, 507
LSI, 42

M
M (see Memory word)
Machine language, 176–77
Magnetic disk, 385, 456
Magnetic drum, 385
Magnetic tape, 385, 457

Magnitude, 337
Magnitude comparator, 338
Main memory, 447, 450
Mantissa, 83, 356
Map simplification, 11–18
Mapping, 218, 221, 465
Mask operation, 113
Mask register, 413
Master–slave flip–flop, 26
Match logic, 461
Matrix multiplication, 324
Medium–scale integration, 42
Memory:

access time, 465
associative, 458–64
auxiliary, 454–58
cache, 464–71
chip, 451
content addressable, 458
FIFO, 402
IC, 41, 451
random access, 60, 450
read only, 61, 452
virtual, 471

Memory address, 60, 133
Memory address map, 452–54
Memory array, 326
Memory bus, 389, 455
Memory cycle, 140
Memory hierarchy, 447
Memory interleaving, 326
Memory management, 478–81
Memory–mapped I/O, 390–91
Memory module, 496
Memory organization, 447
Memory page table, 475, 480
Memory protection, 484
Memory read, 61, 101
Memory reference instructions, 147–52
Memory space, 472
Memory stack, 251–53
Memory transfer, 101–2
Memory word, 58, 101
Memory write, 60–61, 101–2
Message format, 435
Message–passing, 493
Message routing, 501
Metal–oxide semiconductor, 43
Microcomputer, 502
Microinstruction, 216

binary form, 231–32
formats, 224–26
symbolic form, 227–30

Microoperation, 93, 102, 225, 248
arithmetic, 102–3
logic, 108–10
read, 101
register transfer, 102
shift, 114–15
write, 102

Microprocessor, 492

Index 517

Index.qxd 5/22/2007 12:31 PM Page 517

EON
PreMedia

CONFIRMING PGS

Microprogram, 216
binary, 231–32
control, 233–34
example, 222–32
sequencer, 234–37
symbolic, 227–30

Microprogrammed control unit, 216
Minterm, 11
Minuend, 340
MIMD, 303, 491
Mode field, 263, 267
Modem, 432
Modes of transfer, 404–5
Monitor, 384
MOS, 43
Move instruction, 258
MSI, 42
Multiple functional unit, 302, 308
Multiplexer, 48–50, 98
Multiplicand, 342
Multiplication algorithms:

Booth algorithm, 345–48
decimal numbers, 373–75
floating–point, 362–64
signed–magnitude, 343–45
signed–2’s complement, 345–48
software implementation, 197

Multiplication program, 195–98
Multiplier, 342
Multiport memory, 495
Multiprocessor, 491

arbitration, 502–8
communication, 508
interconnection, 493–502
synchronization, 509–11

Multiprogramming, 449
Multistage switching network, 498–100
Mutual exclusion, 510
MUX (see Multiplexer)

N
NAND gate, 5, 9, 16
Next state, 23, 30
NOR gate, 5, 9, 16
Normalization, 83, 357
Number base conversion, 68–71
Number system, 68

O
Object program, 185
Octal numbers, 68–72

binary coded, 70
conversion to binary, 70

Odd function, 6, 88
Omega network, 499–500

One–address instruction, 261
On–line, 384
Opcode, 127
Operating system, 449, 485, 508
Operation code, 126, 257
ORG, 182, 228
OR gate, 5–6
OR microoperation, 110–11

special symbol, 109
Output flag, 154
Overflow, 80–81, 115
Overflow status bit, 276
Overlap register window, 287–90

P
Packet, 493
Page, 474
Page fault, 477
Page frame, 474
Page replacement, 477
Page table, 476
Parallel adder, 338–39
Parallel arbitration logic, 505–7
Parallel load, 54
Parallel processing, 301
Parallel transfer, 51
Parameter linkage, 202
Parity bit, 87
Parity checker, 87–89
Parity generator, 87–89
Partial product, 343, 345
Partial remainder, 351
PC (see Program counter)
Peripheral, 384
Pipeline, 304–9

arithmetic, 309–12
in RISC, 317–21
instruction, 312–17

Pipeline conflicts, 315
Pipeline processing, 301
Pointer, 194
Polish notation, 254
Polling, 409, 507
Pop stack, 251
Port, 391
Present state, 23, 30
Printer, 384
Priority encoder, 413–14
Priority interrupt, 409–14

daisy–chaining, 410–11
parallel, 411–13
software routines, 415–17

Priority logic, 412
Product, 342
Product of sums, 14
Program, 2, 175
Program control instructions, 275–76
Program counter, 130–32

518 Index

Index.qxd 5/22/2007 12:31 PM Page 518

EON
PreMedia

CONFIRMING PGS

Program interrupt, 155–58, 207, 281
Program loop, 192
Program status word, 282
Programmed I/O, 404–8
Programming languages, 178
PROM, 63
Protection, 484
Protocol, 433
Pseudo–instruction, 180–82
Push stack, 249–51
PSW, 282

R
Radix, 68
RAM, 60, 450
Random–access memory, 60–61, 450–52
Read, 60–61, 101
Read microoperation, 101
Read only memory, 61–63, 450

programming of, 62–63
truth table, 62
types of, 62–63

Reduced instruction set computer, 284–87
characteristics, 286–87
instructions, 261–62, 290–91
pipeline, 317–21

Register, 50, 95
Register address, 257
Register indirect mode, 264
Register load, 50
Register mode, 264
Register with parallel load, 51
Register–reference instructions, 145–46
Register stack, 249–51
Register transfer, 95
Register transfer language, 94

basic symbols, 97
Register transfer statements, 95

arithmetic, 102–3
conditional control, 96
logic, 108–10
shift, 114

Registers of basic computer, 130, 159
Relative addressing, 265
Remainder, 351–52
Replacement algorithms, 477–78
Resource conflict, 315
Return address, 150
Return from subroutine, 280
Reverse Polish notation, 253–56

arithmetic expressions, 255–56
RISC, 284–87

instructions, 261–62, 290–93
pipeline, 317–21

ROM, 61, 216, 232, 452
Rotating daisy–chain, 507
Routine, 218
RPN, 254

S
Schottky TTL, 42
SDLC, 439
Sector, 457
Segment, 306, 479
Segment descriptor, 484
Selection inputs, 48
Selective–clear, 112
Selective–complement, 112
Selective–set, 112
Self–complementing code, 86
Semaphore, 510
Sequence counter, 343
Sequencer, 217, 234–37
Sequential circuit, 28

design of, 32–36
Serial communication, 431
Serial communication interface, 153
Serial input, 53
Service program, 416
Service routine, 209
Set, 23
Set–associative mapping, 469
Setup time, 26
Shared memory system, 493–94
Shifter, 115–16
Shift instructions, 373–74
Shift microoperations, 114

hardware implementation, 115–16
Shift operations, 199
Shift register, 53
Signal, 4
Sign status bit, 276
Signed–magnitude, 78
Signed–2’s complement, 78

overflow, 86
Signed numbers, 78
SIMD, 303, 329
Simplex, 433
Single–cycle execution, 318
SISD, 303
Small–scale integration, 41
Snoopy cach controller, 514
Software, 2, 175, 408, 415
Software interrupt, 283–84
Source program, 185
SP (see Stack pointer)
Space–time diagram, 306–7
Speedup ratio, 307–8
SR flip–flop, 22
SSI, 41
Stack, 249
Stack instructions, 261
Stack limit, 253
Stack operations, 256
Stack organization, 249–51
Stack pointer, 249
Start bit, 398
State diagram, 31–32

Index 519

Index.qxd 5/22/2007 12:31 PM Page 519

EON
PreMedia

CONFIRMING PGS

State table, 30–31
Status bits, 219, 276
Status command, 389
Status register, 406
Stop bit, 399
Store, 149
Stored program organization, 127
Strobe control, 393
Subroutine, 200, 280–81
Subroutine call, 150, 202, 280
Subroutine parameters, 202
Subroutine program, 201
Subroutine register, 222
Subroutine return, 202, 280
Subtraction algorithms:

decimal numbers, 370–71, 373
floating–point, 360–62
signed–magnitude, 337–40
signed–2’s complement, 89, 340–42
unsigned numbers, 76

Subtract microoperation, 102–5
Subtractor, 104–5
Subtrahend, 340
Sum of minterms, 11
Sum of products, 14
Supercomputer, 327
Supervisor mode, 282
Symbol table, 185
Symbolic address, 181
Symbolic microprogram, 229
Symbolic program, 177, 186
SYN character, 434
Synchronization, 509
Synchronous bus, 503
Synchronous clear, 58
Synchronous transfer, 398
Synchronous transmission, 432
System bus, 495, 502–4

T
Table–lookup, 189
Tag field, 467
Tape, 385, 457
Task, 306
Test and set, 510
T flip–flop, 24
Three–address instruction, 260
Three–state buffer, 100
Three–state bus, 100–1
Throughput, 301
Tightly coupled multiprocessor, 493
Time shared bus, 493–95
Time slice, 507
Timeout, 398
Timing and control, 137

Timing diagram, 26, 393
Timing signal, 138–40
TLB, 481
Track, 457
Transistor–transistor logic, 42–43
Translation look–aside buffer, 481
Trap, 283
Truth table, 4, 7
TTL, 42
Two-address instruction, 260

U
UART, 400
Underflow, 358
Unsigned numbers, 76

subtraction of, 76–77

V
Valid bit, 471
Vector address, 410
Vector operations, 323
Vector processing, 321
Vectored interrupt, 408
Video monitor, 384
Virtual address, 472
Virtual memory, 471
VLSI, 42, 492

W
Weighted code, 86
Word, 58
Word count register, 419
Write, 60–61, 101
Write microoperation, 102
Write–back, 471
Write–through, 471

X
XOR (see Exclusive–OR)

Z
Zero–address instruction, 261
Zero detection, 277
Zero insertion, 439
Zero status bit, 276

520 Index

Index.qxd 5/22/2007 12:31 PM Page 520

	Cover
	Title
	Copyright
	Content
	Preface
	C H A P T E R O N E_Digital LogicCircuits
	1-1 Digital Computers
	1-2 Logic Gates
	1-3 Boolean Algebra
	1-4 Map Simplification
	1-5 Combinational Circuits
	1-6 Flip-Flops
	1-7 Sequential Circuits
	PROBLEMS
	REFERENCES

	C H A P T E R T W O_Digital Components
	2-1 Integrated Circuits
	2-2 Decoders
	2-3 Multiplexers
	2-4 Registers
	2-5 Shift Registers
	2-6 Binary Counters
	2-7 Memory Unit
	PROBLEMS
	REFERENCES

	C H A P T E R T H R E E_Data Representation
	3-1 Data Types
	3-2 Complements
	3-3 Fixed-Point Representation
	3-4 Floating-Point Representation
	3-5 Other Binary Codes
	3-6 Error Detection Codes
	PROBLEMS
	REFERENCES

	C H A P T E R F O U R_Register Transferand Microoperations
	4-1 Register Transfer Language
	4-2 Register Transfer
	4-3 Bus and Memory Transfers
	4-4 Arithmetic Microoperations
	4-5 Logic Microoperations
	4-6 Shift Microoperations
	4-7 Arithmetic Logic Shift Unit
	4-8 Hardware Description Languages
	PROBLEMS
	REFERENCES

	C H A P T E R F I V E_Basic Computer Organizationand Design
	5-1 Instruction Codes
	5-2 Computer Registers
	5-3 Computer Instructions
	5-4 Timing and Control
	5-5 Instruction Cycle
	5-6 Memory-Reference Instructions
	5-7 Input–Output and Interrupt
	5-8 Complete Computer Description
	5-9 Design of Basic Computer
	5-10 Design of Accumulator Logic
	PROBLEMS
	REFERENCES

	C H A P T E R S I X_Programming the Basic Computer
	6-1 Introduction
	6-2 Machine Language
	6-3 Assembly Language
	6-4 The Assembler
	6-5 Program Loops
	6-6 Programming Arithmetic and Logic Operations
	6-7 Subroutines
	6-8 Input–Output Programming
	PROBLEMS
	REFERENCES

	C H A P T E R S E V E N_Microprogrammed Control
	7-1 Control Memory
	7-2 Address Sequencing
	7-3 Microprogram Example
	7-4 Design of Control Unit
	PROBLEMS
	REFERENCES

	C H A P T E R E I G H T_Central Processing Unit
	8-1 Introduction
	8-2 General Register Organization
	8-3 Stack Organization
	8-4 Instruction Formats
	8-5 Addressing Modes
	8-6 Data Transfer and Manipulation
	8-7 Program Control
	8-8 Reduced Instruction Set Computer (RISC)
	PROBLEMS
	REFERENCES

	C H A P T E R N I N E_Pipeline and Vector Processing
	9-1 Parallel Processing
	9-2 Pipelining
	9-3 Arithmetic Pipeline
	9-4 Instruction Pipeline
	9-5 RISC Pipeline
	9-6 Vector Processing
	9-7 Array Processors
	PROBLEMS
	REFERENCES

	C H A P T E R T E N_Computer Arithmetic
	10-1 Introduction
	10-2 Addition and Subtraction
	10-3 Multiplication Algorithms
	10-4 Division Algorithms
	10-5 Floating-Point Arithmetic Operations
	10-6 Decimal Arithmetic Unit
	10-7 Decimal Arithmetic Operations
	PROBLEMS
	REFERENCES

	C H A P T E R E L E V E N_Input–Output Organization
	11-1 Peripheral Devices
	11-2 Input–Output Interface
	11-3 Asynchronous Data Transfer
	11-4 Modes of Transfer
	11-5 Priority Interrupt
	11-6 Direct Memory Access (DMA)
	11-7 Input�Output Processor (IOP)
	11-8 Serial Communication
	PROBLEMS
	REFERENCES

	C H A P T E R T W E LV E_Memory Organization
	12-1 Memory Hierarchy
	12-2 Main Memory
	12-3 Auxiliary Memory
	12-4 Associative Memory
	12-5 Cache Memory
	12-6 Virtual Memory
	12-7 Memory Management Hardware
	PROBLEMS
	REFERENCES

	C H A P T E R T H I R T E E N_Multiprocessors
	13-1 Characteristics of Multiprocessors
	13-2 Interconnection Structures
	13-3 Interprocessor Arbitration
	13-4 Interprocessor Communication and Synchronization
	PROBLEMS
	REFERENCES

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

		2017-09-08T05:23:38+0000
	Preflight Ticket Signature

